73 research outputs found

    Three-dimensional isotropic perfect lens based on LC-loaded transmission lines

    Full text link
    An isotropic three-dimentional perfect lens based on cubic meshes of interconnected transmission lines and bulk loads is proposed. The lens is formed by a slab of a loaded mesh placed in between two similar unloaded meshes. The dispersion equations and the characteristic impedances of the eigenwaves in the meshes are derived analytically, with an emphasis on generality. This allows designing of transmission-line meshes with desired dispersion properties. The required backward-wave mode of operation in the lens is realized with simple inductive and capacitive loads. An analytical expression for the transmission through the lens is derived and the amplification of evanescent waves is demonstrated. Factors that influence enhancement of evanescent waves in the lens are studied and the corresponding design criteria are established. A possible realization of the structure is outlined.Comment: 22 pages, 15 figure

    Non-local permittivity from a quasi-static model for a class of wire media

    Full text link
    A simple quasi-static model applicable to a wide class of wire media is developed that explains strong non-locality in the dielectric response of wire media in clear physical terms of effective inductance and capacitance per unit length of a wire. The model is checked against known solutions and found to be in excellent agreement with the results obtained by much more sophisticated analytical and numerical methods. Special attention is given to suppression of the spatial dispersion effects in wire media.Comment: 22 pagees, 4 figure

    Modeling of Isotropic Backward-Wave Materials Composed of Resonant Spheres

    Full text link
    A possibility to realize isotropic artificial backward-wave materials is theoretically analyzed. An improved mixing rule for the effective permittivity of a composite material consisting of two sets of resonant dielectric spheres in a homogeneous background is presented. The equations are validated using the Mie theory and numerical simulations. The effect of a statistical distribution of sphere sizes on the increasing of losses in the operating frequency band is discussed and some examples are shown.Comment: 15 pages, 7 figure

    Perfect lensing with phase conjugating surfaces: Towards practical realization

    Full text link
    It is theoretically known that a pair of phase conjugating surfaces can function as a perfect lens, focusing propagating waves and enhancing evanescent waves. However, the known experimental approaches based on thin sheets of nonlinear materials cannot fully realize the required phase conjugation boundary condition. In this paper we show that the ideal phase conjugating surface is in principle physically realizable and investigate the necessary properties of nonlinear and nonreciprocal particles which can be used to build a perfect lens system. The physical principle of the lens operation is discussed in detail and directions of possible experimental realizations are outlined.Comment: 16 pages, 5 figure

    Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles

    Full text link
    Symmetry and reciprocity constraints on polarization state of the field diffracted by gratings of quasi-planar particles are considered. It is shown that the optical activity effects observed recently in arrays of quasi-planar plasmonic particles on a dielectric substrate are due to the reflection of the field at the air-dielectric slab interface and are proportional to this reflection coefficient.Comment: 11 pages, 3 figures, 12 references; minor corrections for better appearanc
    • …
    corecore