447 research outputs found

    Tunable Superconducting Properties of a-NbSi Thin Films and Application to Detection in Astrophysics

    Full text link
    We report on the superconducting properties of amorphous NbxSi1-x thin films. The normal-state resistance and critical temperatures can be separately adjusted to suit the desired application. Notably, the relatively low electron-phonon coupling of these films makes them good candidates for an "all electron bolometer" for Cosmological Microwave Background radiation detection. Moreover, this device can be made to suit both high and low impedance readouts

    Thermally-Stimulated Current Investigation of Dopant-Related D- and A+ Trap Centers in Germanium for Cryogenic Detector Applications

    Get PDF
    International audienceThermally-stimulated current measurements provide a sensitive tool to char-acterize carrier traps in germanium detectors for dark matter search. Using this technique at cryogenic temperatures, very shallow traps have been detected with binding energies of a fraction of a meV, associated with the dopant species in the D-(A+) charge states. A positive identification of these traps is achieved through an analysis of the field dependence of the carrier emission rates, which demonstrates a potential well for the trapped carriers in the form of a polarization well in r-4, consistent with Lax's model for carrier trapping by a neutral center. The density of these traps is assessed, and implications for the space-charge cancellation procedure in cryogenic Ge detectors are discussed

    Niobium Silicon alloys for Kinetic Inductance Detectors

    Full text link
    We are studying the properties of Niobium Silicon amorphous alloys as a candidate material for the fabrication of highly sensitive Kinetic Inductance Detectors (KID), optimized for very low optical loads. As in the case of other composite materials, the NbSi properties can be changed by varying the relative amounts of its components. Using a NbSi film with T_c around 1 K we have been able to obtain the first NbSi resonators, observe an optical response and acquire a spectrum in the band 50 to 300 GHz. The data taken show that this material has very high kinetic inductance and normal state surface resistivity. These properties are ideal for the development of KID. More measurements are planned to further characterize the NbSi alloy and fully investigate its potential.Comment: Accepted for publication on Journal of Low Temperature Physics. Proceedings of the LTD15 conference (Caltech 2013

    Background suppression in massive TeO2_2 bolometers with Neganov-Luke amplified light detectors

    Full text link
    Bolometric detectors are excellent devices for the investigation of neutrinoless double-beta decay (0νββ\nu\beta\beta). The observation of such decay would demonstrate the violation of lepton number, and at the same time it would necessarily imply that neutrinos have a Majorana character. The sensitivity of cryogenic detectors based on TeO2_2 is strongly limited by the alpha background in the region of interest for the 0νββ\nu\beta\beta of 130^{130}Te. It has been demonstrated that particle discrimination in TeO2_2 bolometers is possible measuring the Cherenkov light produced by particle interactions. However an event-by-event discrimination with NTD-based light detectors has to be demonstrated. We will discuss the performance of a highly-sensitive light detector exploiting the Neganov-Luke effect for signal amplification. The detector, being operated with NTD-thermistor and coupled to a 750 g TeO2_2 crystal, shows the ability for an event-by-event identification of electron/gamma and alpha particles. The extremely low detector baseline noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of TeO2_2-based 0νββ\nu\beta\beta experiment to an unprecedented level

    Rejection of randomly coinciding events in Li2_2100^{100}MoO4_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    Get PDF
    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate 100^{100}Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double decay of 100^{100}Mo in enriched Li2_2100^{100}MoO4_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of 750\sim 750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of 6×105\sim 6\times10^{-5} counts/(keV\cdotkg\cdoty), to the background counting rate in the region of interest for a large volume (90\sim 90 cm3^3) Li2_2100^{100}MoO4_4 detector. This background level is very encouraging in view of a possible use of the Li2_2100^{100}MoO4_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project

    Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

    Full text link
    We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise strongly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.41.4 101710^{-17}~W/Hz0.5W/Hz^{0.5} (best pixel), or 2.22.2 101710^{-17}~W/Hz0.5W/Hz^{0.5} when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&

    First test of an enriched 116^{116}CdWO4_4 scintillating bolometer for neutrinoless double-beta-decay searches

    Full text link
    For the first time, a cadmium tungstate crystal scintillator enriched in 116^{116}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ~82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated a high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV γ\gamma energy range), a powerful particle identification capability and a high level of internal radiopurity. These results prove that cadmium tungstate is an extremely promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification)

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Measurements of the Complex Conductivity of NbxSi1-x Alloys on the Insulating Side of the Metal-Insulator Transition

    Full text link
    We have conducted temperature and frequency dependent transport measurements in amorphous Nb_x Si_{1-x} samples in the insulating regime. We find a temperature dependent dc conductivity consistent with variable range hopping in a Coulomb glass. The frequency dependent response in the millimeter-wave frequency range can be described by the expression sigma(omega)(ıomega)alphasigma(omega) \propto (-\imath omega)^alpha with the exponent somewhat smaller than one. Our ac results are not consistent with extant theories for the hopping transport.Comment: 4 pages with 3 figures; published version has a different title from original (was: "Electrodynamics in a Coulomb glass"

    ZnO-based scintillating bolometers: New prospects to study double beta decay of 64^{64}Zn

    Full text link
    The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0--6.0 keV. The light yield for β\beta/γ\gamma events was measured as 1.5(3) keV/MeV, while it varies for α\alpha particles in the range of 0.2--3.0 keV/MeV. The detector demonstrate an effective identification of the β\beta/γ\gamma events from α\alpha events using time-properties of only heat signals. %(namely, Rise time parameter). The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge γ\gamma-spectrometer, and bolometric measurements. Only limits were set at the level of O\mathcal{O}(1--100) mBq/kg on activities of \Nuc{K}{40}, \Nuc{Cs}{137} and daughter nuclides from the U/Th natural decay chains. The total internal α\alpha-activity was calculated to be 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of \Nuc{Th}{232} and 12(2) mBq/kg of \Nuc{U}{234}. Limits on double beta decay (DBD) processes in \Nuc{Zn}{64} and \Nuc{Zn}{70} isotopes were set on the level of O(1017\mathcal{O}(10^{17}--1018)10^{18}) yr for various decay modes profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in \Nuc{Zn}{64}, with the most prominent spectral features at \sim10--20 keV, like the two neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of O(1024)\mathcal{O}(10^{24}) yr.Comment: Prepared for submission to JINST; 27 pages, 9 figures, and 7 table
    corecore