32,483 research outputs found
Modelling Interdependent Cascading Failures in Real World Complex Networks using a Functional Dependency Model
Infrastructure systems are becoming increasingly complex and interdependent. As a result our ability to predict the
likelihood of large-scale failure of these systems has significantly diminished and the consequence of this is that we
now have a greatly increased risk of devastating impacts to society.
Traditionally these systems have been analysed using physically-based models. However, this approach can only
provide information for a specific network and is limited by the number of scenarios that can be tested. In an attempt
to overcome this shortcoming, many studies have used network graph theory to provide an alternative analysis
approach. This approach has tended to consider infrastructure systems in isolation, but has recently considered
the analysis of interdependent networks through combination with percolation theory. However, these studies have
focused on the analysis of synthetic networks and tend to only consider the topology of the system.
In this paper we develop a new analysis approach, based upon network theory, but accounting for the hierarchical
structure and functional dependency observed in real world infrastructure networks. We apply this method to two
real world networks, to show that it can be used to quantify the impact that failures within an electricity network have
upon a dependent water network
A study of radiation environment in space and its biological effects
Biological effects on man in space resulting from galactic and solar cosmic radiation are discussed. Importance of secondary ions which contribute to galactic cosmic radiation hazards is analyzed. Mathematical model to show rate of production of secondary ions of given atomic number at various points in absorber is presented
Galactic cosmic ray heavy primary secondary doses
Results of a calculation which estimates the heavy primary secondary doses from cosmic ray interaction data are reported. The incident galactic cosmic ray heavy primary spectrum is represented as the sum of helium, nitrogen, magnesium, and iron components. The incident iron nuclei are allowed to fragment into lesser Z secondaries, which are assumed to travel in the same direction and start with the same energy per nucleon as the interacting primary. The total emergent particle energy spectra and dose are then presented for the galactic heavy primary spectrum incident on aluminum and tissue slabs. The importance of the fragmentation parameters assumed is also evaluated. The total dose from the heavy primaries and their secondaries is found to be reduced by only a factor of two in 20 g/sq cm of shielding
The conductance of a multi-mode ballistic ring: beyond Landauer and Kubo
The Landauer conductance of a two terminal device equals to the number of
open modes in the weak scattering limit. What is the corresponding result if we
close the system into a ring? Is it still bounded by the number of open modes?
Or is it unbounded as in the semi-classical (Drude) analysis? It turns out that
the calculation of the mesoscopic conductance is similar to solving a
percolation problem. The "percolation" is in energy space rather than in real
space. The non-universal structures and the sparsity of the perturbation matrix
cannot be ignored.Comment: 7 pages, 8 figures, with the correct version of Figs.6-
Study of radiation hazards to man on extended missions
Radiation hazards on extended manned space flight
The Quantum-Classical Crossover in the Adiabatic Response of Chaotic Systems
The autocorrelation function of the force acting on a slow classical system,
resulting from interaction with a fast quantum system is calculated following
Berry-Robbins and Jarzynski within the leading order correction to the
adiabatic approximation. The time integral of the autocorrelation function is
proportional to the rate of dissipation. The fast quantum system is assumed to
be chaotic in the classical limit for each configuration of the slow system. An
analytic formula is obtained for the finite time integral of the correlation
function, in the framework of random matrix theory (RMT), for a specific
dependence on the adiabatically varying parameter. Extension to a wider class
of RMT models is discussed. For the Gaussian unitary and symplectic ensembles
for long times the time integral of the correlation function vanishes or falls
off as a Gaussian with a characteristic time that is proportional to the
Heisenberg time, depending on the details of the model. The fall off is
inversely proportional to time for the Gaussian orthogonal ensemble. The
correlation function is found to be dominated by the nearest neighbor level
spacings. It was calculated for a variety of nearest neighbor level spacing
distributions, including ones that do not originate from RMT ensembles. The
various approximate formulas obtained are tested numerically in RMT. The
results shed light on the quantum to classical crossover for chaotic systems.
The implications on the possibility to experimentally observe deterministic
friction are discussed.Comment: 26 pages, including 6 figure
Energy absorption by "sparse" systems: beyond linear response theory
The analysis of the response to driving in the case of weakly chaotic or
weakly interacting systems should go beyond linear response theory. Due to the
"sparsity" of the perturbation matrix, a resistor network picture of
transitions between energy levels is essential. The Kubo formula is modified,
replacing the "algebraic" average over the squared matrix elements by a
"resistor network" average. Consequently the response becomes semi-linear
rather than linear. Some novel results have been obtained in the context of two
prototype problems: the heating rate of particles in Billiards with vibrating
walls; and the Ohmic Joule conductance of mesoscopic rings driven by
electromotive force. Respectively, the obtained results are contrasted with the
"Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT
conference (Prague, 2011). Ref correcte
Rate of energy absorption by a closed ballistic ring
We make a distinction between the spectroscopic and the mesoscopic
conductance of closed systems. We show that the latter is not simply related to
the Landauer conductance of the corresponding open system. A new ingredient in
the theory is related to the non-universal structure of the perturbation matrix
which is generic for quantum chaotic systems. These structures may created
bottlenecks that suppress the diffusion in energy space, and hence the rate of
energy absorption. The resulting effect is not merely quantitative: For a
ring-dot system we find that a smaller Landauer conductance implies a smaller
spectroscopic conductance, while the mesoscopic conductance increases. Our
considerations open the way towards a realistic theory of dissipation in closed
mesoscopic ballistic devices.Comment: 18 pages, 5 figures, published version with updated ref
Study of radiation hazards to man on extended near earth missions
Radiation hazards to man on extended near earth mission
RICS education reform and building surveying : the employers\u27 view
This paper presents the second part of research funded by the RICS Education Trust to investigate the impact of the 2001 education reforms on building surveying. The research involved the collection of data from large national, mainly London-based, employers of building surveyors. Issues of concern to these employers include the extent of construction technology knowledge of graduates, the delivery of contract administration, the placement year, post-graduate conversion courses and the high referral rate for the Assessment of Professional Competence (APC). Recommendations include advice to universities on the design of building surveying undergraduate and conversion courses, a call for further research on the high APC referral rate and greater liaison between industry and universities.<br /
- …