174 research outputs found
Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region
De novo RANBP2 variant in a fetal demise case with cerebral intraparenchymal hemorrhage.
Fetal intracranial hemorrhage (ICH) may result from a wide array of causes, either associated with maternal or fetal risk factors. In the last decade, monogenic causes of susceptibility to fetal ICH have been described, in particular in association with COL4A1 and COL4A2 genes. A peculiar form of ICH is acute necrotizing encephalitis (ANE), which is characterized by a rapid-onset severe encephalopathy following an abnormal inflammatory response to an otherwise banal infection. It usually affects healthy children and it is thought to be multifactorial, with a genetic predisposition. RANBP2 gene has been extensively associated with ANE susceptibility. We hereby present a unique case of a 42-year-old secundigravida with intrauterine fetal demise at 35 weeks of gestation. Trio-based whole-exome sequencing performed on both parents and fetal DNA showed a de novo likely pathogenic variant in the RANBP2 gene on 2q13. At the fetal autopsy, subtentorial hematoma and cerebral intraparenchymal hemorrhage were present. We speculate that this might be a new phenotypic presentation of RANBP2-associated disease. However, more similar fetal cases need to be reported in order to reinforce this hypothesis
A Modified Protocol for Bisulfite Genomic Sequencing of Difficult Samples
The bisulfite genomic sequencing protocol is a widely used method for analyzing DNA methylation. It relies on the deamination of unmethylated cytosine residues to uracil; however, its high rates of DNA degradation and incomplete cytosine to uracil conversion often lead to failed experiments, uninformative results, and false positives. Here, we report the addition of a single-step multiple restriction enzyme digestion (MRED) designed to differentially digest polymerase chain reaction products amplified from unconverted DNA while leaving those of converted DNA intact. We show that for our model system, RARB2 P2 promoter, use of MRED increased informative sequencings ninefold, and MRED did not alter the clonal representation in one fully methylated cell line, H-596, treated or not with 5-azadeoxycytidine, a methylation inhibitor. We believe that this method may easily be adapted for analyzing other genes and provide guidelines for selecting the most appropriate MRED restriction enzymes
Epigenetic effects of chromatin remodeling agents on organotypic cultures
Background: Tumor epigenetic defects are of increasing relevance to clinical practice, because they are 'druggable' targets for cancer therapy using chromatin-remodeling agents (CRAs). New evidences highlight the importance of the microenvironment on the epigenome regulation and the need to use culture models able to preserve tissue morphology, to better understand the action of CRAs. Methods & methods: We studied the epigenetic response induced by culturing and CRAs in a preclinical model, preserving ex vivo the original tissue microenvironment and morphology, assessing different epigenetic signatures. Our overall findings suggest that culturing and CRAs cause heterogeneous effects on the genes methylation; CRAs affect the global DNA methylation and can trigger an active DNA demethylation; the culture induces alterations in the histone deacetylase expression. Conclusion: Despite the limited number of cases, these findings can be considered a proof of concept of the possibility to test CRAs epigenetic effects on ex vivo tissues maintained in their native tissue architecture
Constitutive BRCA1 Promoter Hypermethylation Can Be a Predisposing Event in Isolated Early-Onset Breast Cancer
Early age at onset of breast cancer (eoBC) is suggestive of an increased genetic risk. Although genetic testing is offered to all eoBC-affected women, in isolated cases the detection rate of pathogenic variants is 60% and loss of heterozygosity at chromosome 17q. The patient hypermethylated at RAD51C showed low methylation in the tumor sample, ruling out a role for methylation-induced silencing in tumor development. In isolated eoBC patients, BRCA1 constitutive promoter methylation may be a predisposing event. Further studies are required to define the impact of methylation changes occurring at BC-predisposing genes and their role in tumorigenesis
MGMT-Methylated Alleles Are Distributed Heterogeneously Within Glioma Samples Irrespective of IDH Status and Chromosome 10q Deletion
Several molecular markers drive diagnostic classification, prognostic stratification, and/or prediction of response to therapy in patients with gliomas. Among them, IDH gene mutations are valuable markers for defining subtypes and are strongly associated with epigenetic silencing of the methylguanine DNA methyltransferase (MGMT) gene. However, little is known about the percentage of MGMT-methylated alleles in IDH-mutated cells or the potential association between MGMT methylation and deletion of chromosome 10q, which encompasses the MGMT locus. Here, we quantitatively assessed MGMT methylation and IDH1 mutation in 208 primary glioma samples to explore possible differences associated with the IDH genotype. We also explored a potential association between MGMT methylation and loss of chromosome 10q. We observed that MGMT methylation was heterogeneously distributed within glioma samples irrespective of IDH status suggesting an incomplete overlap between IDH1-mutated and MGMT-methylated alleles and indicating a partial association between these two events. Moreover, loss of one MGMT allele did not affect the methylation level of the remaining allele. MGMT was methylated in about half of gliomas harboring a 10q deletion; in those cases, loss of heterozygosity might be considered a second hit leading to complete inactivation of MGMT and further contributing to tumor progression
SETBP1 variants outside the degron disrupt DNA-binding and transcription independent of protein abundance to cause a heterogeneous neurodevelopmental disorder
Germline de novo SETBP1 variants cause clinically distinct and heterogeneous neurodevelopmental disorders. Heterozygous missense variants at a hotspot encoding a canonical degron lead to SETBP1 accumulation and Schinzel-Giedion syndrome (SGS), a rare severe developmental disorder involving multisystem malformations. Heterozygous loss-of-function variants result in SETBP1 haploinsufficiency disorder which is phenotypically much milder than SGS. Following an initial description of four individuals with atypical SGS carrying heterozygous missense variants adjacent to the degron, a few individual cases of variants outside the degron were reported. Due to the lack of systematic investigation of genotype-phenotype associations of different types of SETBP1 variants, and limited understanding of the roles of the gene in brain development, the extent of clinical heterogeneity and how this relates to underlying pathophysiological mechanisms remain elusive, imposing challenges for diagnosis and patient care. Here, we present a comprehensive investigation of the largest cohort to-date of individuals carrying SETBP1 missense variants outside the degron (n=18, including one in-frame deletion). We performed thorough clinical and speech phenotyping with functional follow-up using cellular assays and transcriptomics. Our findings suggest that such variants cause a clinically and functionally variable developmental syndrome, showing only partial overlaps with classical SGS and SETBP1 haploinsufficiency disorder, and primarily characterised by intellectual disability, epilepsy, speech and motor impairment. We provide evidence of loss-of-function pathophysiological mechanisms impairing ubiquitination, DNA-binding and transcription. In contrast to SGS and SETBP1 haploinsufficiency, these effects are independent of protein abundance. Overall, our study provides important novel insights into diagnosis, patient care and aetiology of SETBP1-related disorders
Derangement of a Factor Upstream of RARα Triggers the Repression of a Pleiotropic Epigenetic Network
Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha), can impair the integration of the retinoic acid (RA) signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2), which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes
Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells
BACKGROUND: The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. METHODS: RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RESULTS: RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10(-8)), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). CONCLUSION: Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN
- …