8,212 research outputs found
Microwave oven fabricated hybrid memristor devices for non-volatile memory storage
© 2014 IOP Publishing Ltd. Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells
Mean curvature flow and quasilocal mass for two-surfaces in Hamiltonian General Relativity
A family of quasilocal mass definitions that includes as special cases the
Hawking mass and the Brown-York ``rest mass'' energy is derived for spacelike
2-surfaces in spacetime. The definitions involve an integral of powers of the
norm of the spacetime mean curvature vector of the 2-surface, whose properties
are connected with apparent horizons. In particular, for any spacelike
2-surface, the direction of mean curvature is orthogonal (dual in the normal
space) to a unique normal direction in which the 2-surface has vanishing
expansion in spacetime. The quasilocal mass definitions are obtained by an
analysis of boundary terms arising in the gravitational ADM Hamiltonian on
hypersurfaces with a spacelike 2-surface boundary, using a geometric time-flow
chosen proportional to the dualized mean curvature vector field at the boundary
surface. A similar analysis is made choosing a geometric rotational flow given
in terms of the twist covector of the dual pair of mean curvature vector
fields, which leads to a family of quasilocal angular momentum definitions
involving the squared norm of the twist. The large sphere limit of these
definitions is shown to yield the ADM mass and angular momentum in
asymptotically flat spacetimes, while at apparent horizons a quasilocal version
of the Gibbons-Penrose inequality is derived. Finally, some results concerning
positivity are proved for the quasilocal masses, motivated by consideration of
spacelike mean curvature flow of 2-surfaces in spacetime.Comment: Revised version, includes an analysis of null flows with applications
to mass and angular momentum for apparent horizon
Solution-processed bilayer photovoltaic devices with nematic liquid crystals
The cross-linking of polymerisable liquid crystalline semiconductors is a promising approach to solution-processable, multilayer, organic photovoltaics. Here we demonstrate an organic bilayer photovoltaic with an insoluble electron-donating layer formed by cross-linking a nematic reactive mesogen. We investigate a range of perylene diimide (PDI) materials, some of which are liquid crystalline, as the overlying electron acceptor layer. We find that carrier mobility of the acceptor materials is enhanced by liquid crystallinity and that mobility limits the performance of photovoltaic devices. © 2013 © 2013 Taylor & Francis
Magnification relations for Kerr lensing and testing Cosmic Censorship
A Kerr black hole with mass parameter m and angular momentum parameter a
acting as a gravitational lens gives rise to two images in the weak field
limit. We study the corresponding magnification relations, namely the signed
and absolute magnification sums and the centroid up to post-Newtonian order. We
show that there are post-Newtonian corrections to the total absolute
magnification and centroid proportional to a/m, which is in contrast to the
spherically symmetric case where such corrections vanish. Hence we also propose
a new set of lensing observables for the two images involving these
corrections, which should allow measuring a/m with gravitational lensing. In
fact, the resolution capabilities needed to observe this for the Galactic black
hole should in principle be accessible to current and near-future
instrumentation. Since a/m >1 indicates a naked singularity, a most interesting
application would be a test of the Cosmic Censorship conjecture. The technique
used to derive the image properties is based on the degeneracy of the Kerr lens
and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple
physical explanation for this degeneracy is also given.Comment: 13 pages, version 2: references added, minor changes. To appear in
Phys. Rev.
3D Simulations of MHD Jet Propagation Through Uniform and Stratified External Environments
We present a set of high-resolution 3D MHD simulations of steady light,
supersonic jets, exploring the influence of jet Mach number and the ambient
medium on jet propagation and energy deposition over long distances. The
results are compared to simple self-similar scaling relations for the
morphological evolution of jet-driven structures and to previously published 2D
simulations. For this study we simulated the propagation of light jets with
internal Mach numbers 3 and 12 to lengths exceeding 100 initial jet radii in
both uniform and stratified atmospheres.
The propagating jets asymptotically deposit approximately half of their
energy flux as thermal energy in the ambient atmosphere, almost independent of
jet Mach number or the external density gradient. Nearly one-quarter of the jet
total energy flux goes directly into dissipative heating of the ICM, supporting
arguments for effective feedback from AGNs to cluster media. The remaining
energy resides primarily in the jet and cocoon structures. Despite having
different shock distributions and magnetic field features, global trends in
energy flow are similar among the different models.
As expected the jets advance more rapidly through stratified atmospheres than
uniform environments. The asymptotic head velocity in King-type atmospheres
shows little or no deceleration. This contrasts with jets in uniform media with
heads that are slowed as they propagate. This suggests that the energy
deposited by jets of a given length and power depends strongly on the structure
of the ambient medium. While our low-Mach jets are more easily disrupted, their
cocoons obey evolutionary scaling relations similar to the high-Mach jets.Comment: Accepted in ApJ, 32 pages, 18 figures, animations available from:
http://www.msi.umn.edu/Projects/twj/newsite/projects/radiojets/movies
Uniqueness of static decompositions
We classify static manifolds which admit more than one static decomposition
whenever a condition on the curvature is fullfilled. For this, we take a
standard static vector field and analyze its associated one parameter family of
projections onto the base. We show that the base itself is a static manifold
and the warping function satisfies severe restrictions, leading us to our
classification results. Moreover, we show that certain condition on the
lightlike sectional curvature ensures the uniqueness of static decomposition
for Lorentzian manifolds.Comment: 14 page
A Morse-theoretical analysis of gravitational lensing by a Kerr-Newman black hole
Consider, in the domain of outer communication of a Kerr-Newman black hole, a
point (observation event) and a timelike curve (worldline of light source).
Assume that the worldline of the source (i) has no past end-point, (ii) does
not intersect the caustic of the past light-cone of the observation event, and
(iii) goes neither to the horizon nor to infinity in the past. We prove that
then for infinitely many positive integers k there is a past-pointing lightlike
geodesic of (Morse) index k from the observation event to the worldline of the
source, hence an observer at the observation event sees infinitely many images
of the source. Moreover, we demonstrate that all lightlike geodesics from an
event to a timelike curve in the domain of outer communication are confined to
a certain spherical shell. Our characterization of this spherical shell shows
that in the Kerr-Newman spacetime the occurrence of infinitely many images is
intimately related to the occurrence of centrifugal-plus-Coriolis force
reversal.Comment: 14 pages, 2 figures; REVTEX; submitted to J. Math. Phy
Yang-Mills fields on CR manifolds
We study pseudo Yang-Mills fields on a compact strictly pseudoconvex CR
manifold.Comment: 52 page
Measures of gravitational entropy I. Self-similar spacetimes
We examine the possibility that the gravitational contribution to the entropy
of a system can be identified with some measure of the Weyl curvature. In this
paper we consider homothetically self-similar spacetimes. These are believed to
play an important role in describing the asymptotic properties of more general
models. By exploiting their symmetry properties we are able to impose
significant restrictions on measures of the Weyl curvature which could reflect
the gravitational entropy of a system. In particular, we are able to show, by
way of a more general relation, that the most widely used "dimensionless"
scalar is \textit{not} a candidate for this measure along homothetic
trajectories.Comment: revtex, minor clarifications, to appear in Physical Review
Low-Frequency Oscillations in Global Simulations of Black Hole Accretion
We have identified the presence of large-scale, low-frequency dynamo cycles
in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole
accretion. Such cycles had been seen previously in local shearing box
simulations, but we discuss their evolution over 1,500 inner disk orbits of a
global pi/4 disk wedge spanning two orders of magnitude in radius and seven
scale heights in elevation above/below the disk midplane. The observed cycles
manifest themselves as oscillations in azimuthal magnetic field occupying a
region that extends into a low-density corona several scale heights above the
disk. The cycle frequencies are ten to twenty times lower than the local
orbital frequency, making them potentially interesting sources of low-frequency
variability when scaled to real astrophysical systems. Furthermore, power
spectra derived from the full time series reveal that the cycles manifest
themselves at discrete, narrow-band frequencies that often share power across
broad radial ranges. We explore possible connections between these simulated
cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in
galactic black hole binary systems, finding that dynamo cycles have the
appropriate frequencies and are located in a spatial region associated with
X-ray emission in real systems. Derived observational proxies, however, fail to
feature peaks with RMS amplitudes comparable to LFQPO observations, suggesting
that further theoretical work and more sophisticated simulations will be
required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this
work clearly illustrates that global MHD dynamos exhibit quasi-periodic
behavior on timescales much longer than those derived from test particle
considerations.Comment: Version accepted to The Astrophysical Journal, 8 pages, 7 figure
- …