94 research outputs found

    An Upper Limit on the Reflected Light from the Planet Orbiting the Star tau Bootis

    Get PDF
    The planet orbiting tau Boo at a separation of 0.046 AU could produce a reflected light flux as bright as 1e-4 relative to that of the star. A spectrum of the system will contain a reflected light component which varies in amplitude and Doppler-shift as the planet orbits the star. Assuming the secondary spectrum is primarily the reflected stellar spectrum, we can limit the relative reflected light flux to be less than 5e-5. This implies an upper limit of 0.3 for the planetary geometric albedo near 480 nm, assuming a planetary radius of 1.2 R_Jup. This albedo is significantly less than that of any of the giant planets of the solar system, and is not consistent with certain published theoretical predictions.Comment: 5 pages, 1 figure, accepted by ApJ Letter

    ESI, a new Keck Observatory echellette spectrograph and imager

    Full text link
    The Echellette Spectrograph and Imager (ESI) is a multipurpose instrument which has been delivered by the Instrument Development Laboratory of Lick Observatory for use at the Cassegrain focus of the Keck II telescope. ESI saw first light on August 29, 1999. ESI is a multi-mode instrument that enables the observer to seamlessly switch between three modes during an observation. The three modes of ESI are: An R=13,000-echellette mode; Low-dispersion prismatic mode; Direct imaging mode. ESI contains a unique flexure compensation system which reduces the small instrument flexure to negligible proportions. Long-exposure images on the sky show FWHM spot diameters of 34 microns (0.34") averaged over the entire field of view. These are the best non-AO images taken in the visible at Keck Observatory to date. Maximum efficiencies are measured to be 28% for the echellette mode and greater than 41% for low-dispersion prismatic mode including atmospheric, telescope and detector losses. In this paper we describe the instrument and its development. We also discuss the performance-testing and some observational results.Comment: 10 pages, 14 figures, 8tables, accepted for publication in PASP, 15 April 200

    Computational and Serologic Analysis of Novel and Known Viruses in Species Human Adenovirus D in Which Serology and Genomics Do Not Correlate

    Get PDF
    In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate

    SYMPOSIUM ON CONGESTIVE HEART FAILURE

    No full text
    • …
    corecore