14,410 research outputs found

    Magnetic field induced singlet - triplet phase transition in quasi one-dimensional organic superconductors

    Full text link
    We propose a theoretical model of quasi-one-dimensional superconductors, with attractive electron-electron interactions dominant in the singlet d-wave channel and sub-dominant in the p-wave channel. We discuss, in the mean field approximation, the effect of a magnetic field applied perpendicularly to the direction of the lowest conductivity. The lowest free energy phase corresponds to a singlet d-wave symmetry in low fields, but to a triplet symmetry in high fields. A first order singlet-triplet phase transition is expected at moderate applied fields of a few teslas. We propose to ascribe the recent critical field and NMR experimental data, observed in superconducting (TMTSF)2ClO4 to such an effect.Comment: 6 pages, 2 figures, accepted in EP

    Association of serum fetuin-A and biochemical parameters in hemodialysis patients.

    Get PDF
    Fetuin-A, a hepatic glycoprotein present in the circulation, is a potential inhibitor for systemic calcification. The main aim of this study was to evaluate the association between fetuin-A and other biochemical parameters as facilitator factors for developing atherosclerosis in hemodialysis (HD) patients. This case-control study was conducted on 44 HD patients undergoing treatment in 2012. Parathormone (i-PTH) and fetuin levels were performed by the enzyme-linked immunosorbent assay method, high-sensitivity C-reactive protein (hs-CRP) by chemiluminescence, low-density lipoprotein by direct enzymatic, calcium and albumin by colorimetric and phosphorous by ultraviolet (UV) methods. Chi-square was used for evaluating the association between variables and t-test was used for comparing the mean of the quantitative variables for the two groups. SPSS-16 software was used for data analysis and P-value less than 5% was considered as significant. Mean of serum fetuin level was 23.25 ± 4.90 ng/mL in HD patients and 32.92 ± 5.21 in the control group. Median of hs-CRP was 2.45 mg/dL in the patients and 1.00 mg/dL in the control group and i-PTH was 74.3 pg/mL in the patients and 7.30 pg/mL in the control group. The calcium-phosphorous product was 46.77 ± 14.22 mg/dL in the patient and 31.73 ± 6.48 mg/dL in the control group. A reverse significant association was found between fetuin-A and hs-CRP in this study. In this study, serum fetuin-A level in HD patients was lower than controls. Therefore, a low level of fetuin-A seems to be associated with atherosclerosis, inflammation and malnutrition

    Disorder-induced superconductivity in ropes of carbon nanotubes

    Full text link
    We study the interplay between disorder and superconductivity in a rope of metallic carbon nanotubes. Based on the time dependent Ginzburg Landau theory, we derive the superconducting transition temperature Tc_c taking into account the critical superconducting fluctuations which are expected to be substantially strong in such low dimensional systems. Our results indicate that, contrary to what is expected, Tc_c increases by increasing the amount of disorder. We argue that this behavior is due to the dynamics of the tubes which reduces the drastic effect of the local disorder on superconductivity by enhancing the intertube Josephson tunneling. We also found that Tc_c is enhanced as the effective dimensionality of the rope increases by increasing the number N of the tubes forming the rope. However, Tc_c tends to saturate for large values of N, expressing the establishment of a bulk three dimensional (3D) superconducting order.Comment: 9 pages, 4 figur

    Critical properties of an aperiodic model for interacting polymers

    Full text link
    We investigate the effects of aperiodic interactions on the critical behavior of an interacting two-polymer model on hierarchical lattices (equivalent to the Migadal-Kadanoff approximation for the model on Bravais lattices), via renormalization-group and tranfer-matrix calculations. The exact renormalization-group recursion relations always present a symmetric fixed point, associated with the critical behavior of the underlying uniform model. If the aperiodic interactions, defined by s ubstitution rules, lead to relevant geometric fluctuations, this fixed point becomes fully unstable, giving rise to novel attractors of different nature. We present an explicit example in which this new attractor is a two-cycle, with critical indices different from the uniform model. In case of the four-letter Rudin-Shapiro substitution rule, we find a surprising closed curve whose points are attractors of period two, associated with a marginal operator. Nevertheless, a scaling analysis indicates that this attractor may lead to a new critical universality class. In order to provide an independent confirmation of the scaling results, we turn to a direct thermodynamic calculation of the specific-heat exponent. The thermodynamic free energy is obtained from a transfer matrix formalism, which had been previously introduced for spin systems, and is now extended to the two-polymer model with aperiodic interactions.Comment: 19 pages, 6 eps figures, to appear in J. Phys A: Math. Ge

    Integrated control-system design via generalized LQG (GLQG) theory

    Get PDF
    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations

    Survival after postoperative morbidity: a longitudinal observational cohort study

    Get PDF
    Prolonged morbidity after surgery is associated with a risk of premature death for a longer duration than perhaps is commonly thought; however, this risk falls with time. We suggest that prolonged postoperative morbidity measured in this way may be a valid indicator of the quality of surgical healthcare. Our findings reinforce the importance of research and quality improvement initiatives aimed at reducing the duration and severity of postoperative complication

    The Optimal Projection Equations for Reduced-Order State Estimation: The Singular Measurement Noise Case

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57879/1/OptProjSingStateEstTAC1987.pd

    Robust stabilization with positive real uncertainty: Beyond the small gain theorem

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57858/1/PosRealUncSCL1991.pd
    • …
    corecore