8,290 research outputs found

    Nonlinear Evolution of the Magnetohydrodynamic Rayleigh-Taylor Instability

    Full text link
    We study the nonlinear evolution of the magnetic Rayleigh-Taylor instability using three-dimensional MHD simulations. We consider the idealized case of two inviscid, perfectly conducting fluids of constant density separated by a contact discontinuity perpendicular to the effective gravity g, with a uniform magnetic field B parallel to the interface. Modes parallel to the field with wavelengths smaller than l_c = [B B/(d_h - d_l) g] are suppressed (where d_h and d_l are the densities of the heavy and light fluids respectively), whereas modes perpendicular to B are unaffected. We study strong fields with l_c varying between 0.01 and 0.36 of the horizontal extent of the computational domain. Even a weak field produces tension forces on small scales that are significant enough to reduce shear (as measured by the distribution of the amplitude of vorticity), which in turn reduces the mixing between fluids, and increases the rate at which bubbles and finger are displaced from the interface compared to the purely hydrodynamic case. For strong fields, the highly anisotropic nature of unstable modes produces ropes and filaments. However, at late time flow along field lines produces large scale bubbles. The kinetic and magnetic energies transverse to gravity remain in rough equipartition and increase as t^4 at early times. The growth deviates from this form once the magnetic energy in the vertical field becomes larger than the energy in the initial field. We comment on the implications of our results to Z-pinch experiments, and a variety of astrophysical systems.Comment: 25 pages, accepted by Physics of Fluids, online version of journal has high resolution figure

    Lower limit on the achievable temperature in resonator-based sideband cooling

    Full text link
    A resonator can be effectively used as a cooler for another linear oscillator with a much smaller frequency. A huge cooling effect, which could be used to cool a mechanical oscillator below the energy of quantum fluctuations, has been predicted by several authors. However, here we show that there is a lower limit T* on the achievable temperature that was not considered in previous works and can be higher than the quantum limit in realistic experimental realizations. We also point out that the decay rate of the resonator, which previous studies stress should be small, must be larger than the decay rate of the cooled oscillator for effective cooling.Comment: 6 pages, 4 figures, uses psfra

    Occurrence of a Gynandromorphic Bombus bimaculatus (Hymenoptera: Apidae) in Southeastern Ohio

    Get PDF
    Herein, we introduce the first reported case of gynandromorphy in the bumblebee Bombus bimaculatus (Cresson) (Hymenoptera: Apidae), a relatively common North American species found east of the Mississippi River. The specimen was collected in Marietta, Ohio as part of a bee diversity assessment project for Washington County. Gynanders exhibit discrete male and female characters in a single individual. We discuss the potential causes of gynandromorphy exhibited by this specimen, which has differing antennal segments (12 and 13), facial maculation, abdominal hair coloration, and the presence of a corbicula – secondary sex characters that are characteristic for the genus Bombus

    Theory of the Ramsey spectroscopy and anomalous segregation in ultra-cold rubidium

    Full text link
    The recent anomalous segregation experiment of Lewandowski et al. (PRL, 88, 070403, 2002) shows dramatic, rapid internal state segregation for two hyperfine levels of rubidium. We simulate an effective one dimensional model of the system for experimental parameters and find reasonable agreement with the data. The Ramsey frequency is found to be insensitive to the decoherence of the superposition, and is only equivalent to the interaction energy shift for a pure superposition. A Quantum Boltzmann equation describing collisions is derived using Quantum Kinetic Theory, taking into account the different scattering lengths of the internal states. As spin-wave experiments are likely to be attempted at lower temperatures we examine the effect of degeneracy on decoherence by considering the recent experiment of Lewandowski et al. where degeneracy is around 10%. We also find that the segregation effect is only possible when transport terms are included in the equations of motion, and that the interactions only directly alter the momentum distributions of the states. The segregation or spin wave effect is thus entirely due to coherent atomic motion as foreseen in the experimental reportComment: 26 pages, 4 figures, to be published in J. Phys.

    Quadripartite continuous-variable entanglement via quadruply concurrent downconversion

    Get PDF
    We investigate an intra-cavity coupled down-conversion scheme to generate quadripartite entanglement using concurrently resonant nonlinearities. We verify that quadripartite entanglement is present in this system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of the van Loock-Furusawa type. The entanglement characteristics both above and below the oscillation threshold are considered. We also present analytic solutions for the quadrature operators and the van Loock-Furusawa correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure

    Decoherence and the conditions for the classical control of quantum systems

    Full text link
    We find the conditions for one quantum system to function as a classical controller of another quantum system: the controller must be an open system and rapidly diagonalised in the basis of the controller variable that is coupled to the controlled system. This causes decoherence in the controlled system that can be made small if the rate of diagonalisation is fast. We give a detailed example based on the quantum optomechanical control of a mechanical resonator. The resulting equations are similar in structure to recently proposed models for consistently combining quantum and classical stochastic dynamics

    Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation

    Get PDF
    The process of cascaded downconversion and sum-frequency generation inside an optical cavity has been predicted to be a potential source of three-mode continuous-variable entanglement. When the cavity is pumped by two fields, the threshold properties have been analysed, showing that these are more complicated than in well-known processes such as optical parametric oscillation. When there is only a single pumping field, the entanglement properties have been calculated using a linearised fluctuation analysis, but without any consideration of the threshold properties or critical operating points of the system. In this work we extend this analysis to demonstrate that the singly pumped system demonstrates a rich range of threshold behaviour when quantisation of the pump field is taken into account and that asymmetric polychromatic entanglement is available over a wide range of operational parameters.Comment: 24 pages, 15 figure

    AFES Circular 127

    Get PDF

    Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    Get PDF
    We examine the feasibility of generating continuous-variable multipartite entanglement in an intra-cavity quadruply concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci \textit{et al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure

    Helix or Coil? Fate of a Melting Heteropolymer

    Full text link
    We determine the probability that a partially melted heteropolymer at the melting temperature will either melt completely or return to a helix state. This system is equivalent to the splitting probability for a diffusing particle on a finite interval that moves according to the Sinai model. When the initial fraction of melted polymer is f, the melting probability fluctuates between different realizations of monomer sequences on the polymer. For a fixed value of f, the melting probability distribution changes from unimodal to a bimodal as the strength of the disorder is increased.Comment: 4 pages, 5 figure
    • …
    corecore