80,956 research outputs found

    On site challenges for the construction of 16-storey condominium: as observed by a young civil engineering technologist

    Get PDF
    The difference between an engineer and an engineering technologist is that, an engineer would mainly focus and produce structural designs based on engineering calculations, while the job of an engineering technologist is to execute the design in the real working environment by adopting flexible and critical technical ideas on-site. The challenges can be divided into two categories, namely design challenges faced by an engineer and the construction challenges faced by an engineering technologist. Thus, the job scope of an engineering technologist is relatively wider when compared to that of an engineer, as the engineering technologist would be dealing with the consultant, contractors and suppliers on site, while handling the in situ construction challenges. This requires basic understanding of engineering principles and technology, critical thinking and problem-solving skills, modern tools competency in software applications, designs and construction calculations, as well as communication and leadership skills all rolled into one. I have recorded my experience as a junior civil engineering technologist engaged in the construction works of a 16-storey condominium at Langkawi, Kedah. Included in the descriptions are in situ technical problems encountered, potentially unsafe working conditions, foundations, scheduling and housekeeping on site, among others. I hope that the information shared in this entry would make a good introduction and induction for juniors entering the work site, where my personal undertakings could serve as a guide and reminder for them

    Graphical method for analyzing digital computer efficiency

    Get PDF
    Analysis method utilizes graph-theoretic approach for evaluating computation cost and makes logical distinction between linear graph of a computation and linear graph of a program. It applies equally well to other processes which depend on quatitative edge nomenclature and precedence relationships between edges

    A topological approach to computer-aided sensitivity analysis

    Get PDF
    Sensitivities of any arbitrary system are calculated using general purpose digital computer with available software packages for transfer function analysis. Sensitivity shows how element variation within system affects system performance. Signal flow graph illustrates topological system behavior and relationship among parameters in system

    Fermion Generations and Mixing from Dualized Standard Model

    Get PDF
    We review a possible solution to the fermion generation puzzle based on a nonabelian generalization of electric--magnetic duality derived some years ago. This nonabelian duality implies the existence of another SU(3) symmetry dual to colour, which is necessarily broken when colour is confined and so can play the role of the ``horizontal'' symmetry for fermion generations. When thus identified, dual colour then predicts 3 and only 3 fermion generations, besides suggesting a special Higgs mechanism for breaking the generation symmetry. A phenomenological model with a Higgs potential and a Yukawa coupling constructed on these premises is shown to explain immediately all the salient qualitative features of the fermion mass hierarchy and mixing pattern, excepting for the moment CP-violation. Calculations already carried out to 1-loop order is shown to give with only 3 adjustable parameters the following quantities all to within present experimental error: all 9 CKM matrix elements ∣Vrs∣|V_{rs}| for quarks, the neutrino oscillation angles or the MNS lepton mixing matrix elements ∣Uμ3∣,∣Ue3∣|U_{\mu 3}|, |U_{e 3}|, and the mass ratios mc/mt,ms/mb,mμ/mτm_c/m_t, m_s/m_b, m_\mu/m_\tau. The special feature of this model crucial for deriving the above results is a fermion mass matrix which changes its orientation (rotates) in generation space with changing energy scale, a feature which is shown to have direct empirical support.Comment: updated version of course of lectures given at the 42nd Cracow School of Theoretical Physics, 2002, Polan

    Axiomatic Holonomy Maps and Generalized Yang-Mills Moduli Space

    Full text link
    This article is a follow-up of ``Holonomy and Path Structures in General Relativity and Yang-Mills Theory" by Barrett, J. W. (Int.J.Theor.Phys., vol.30, No.9, 1991). Its main goal is to provide an alternative proof of this part of the reconstruction theorem which concerns the existence of a connection. A construction of connection 1-form is presented. The formula expressing the local coefficients of connection in terms of the holonomy map is obtained as an immediate consequence of that construction. Thus the derived formula coincides with that used in "On Loop Space Formulation of Gauge Theories" by Chan, H.-M., Scharbach, P. and Tsou S.T. (Ann.Phys., vol.167, 454-472, 1986). The reconstruction and representation theorems form a generalization of the fact that the pointed configuration space of the classical Yang-Mills theory is equivalent to the set of all holonomy maps. The point of this generalization is that there is a one-to-one correspondence not only between the holonomy maps and the orbits in the space of connections, but also between all maps from the loop space on MM to group GG fulfilling some axioms and all possible equivalence classes of P(M,G)P(M,G) bundles with connection, where the equivalence relation is defined by bundle isomorphism in a natural way.Comment: amslatex, 7 pages, no figure

    Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse

    Full text link
    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ\Gamma has smaller value for such a fluid in cylindrically symmetric than isotropic sphere

    A Proton Magnetic Resonance Study of the Association of Lysozyme with Monosaccharide Inhibitors

    Get PDF
    It has been shown that the acetamido methyl protons of N-acetyl-d-glucosamine undergo a chemical shift to higher fields in their proton magnetic resonance spectrum when the inhibitor is bound to lysozyme. The observed chemical shift in the presence of the enzyme is different for the agr- and ß-anomeric forms of 2-acetamido-2-deoxy-d-glucopyranose indicating either a difference in the affinity of the anomeric forms for lysozyme or different magnetic environments for the methyl protons in their enzyme-bound state. That the agr- and ß-anomeric forms of GlcAc bind to lysozyme in a competitive fashion was indicated by observing the proton magnetic resonance spectra in the presence of 2-acetamido-d3-2-deoxy-agr-d-glucopyranose. The methyl glycosides, methyl-agr-GlcAc and methyl-ß-GlcAc, were also shown to bind competitively with both anomers of GlcAc. Quantitative analysis of the chemical shift data observed for the association of GlcAc with lysozyme was complicated by the mutarotation of GlcAc between its agr- and ß-anomeric forms. However, in the case of the methyl glucosides, where the conformation of each anomer is frozen, it was possible to analyze the chemical shift data in a straightforward manner, and the dissociation constant as well as the chemical shift of the acetamido methyl protons of the enzyme-inhibitor complex was determined for both anomers. The results indicate that the two anomers of methyl-GlcAc bind to lysozyme with slightly different affinities but that the acetamido methyl groups of both anomers experience identical magnetic environments in the enzyme-inhibitor complex
    • …
    corecore