342 research outputs found

    High resolution characterisation of microstructural evolution in Rbx_{x}Fe2y_{2-y}Se2_{2} crystals on annealing

    Full text link
    The superconducting and magnetic properties of phase-separated Ax_xFe2y_{2-y}Se2_2 compounds are known to depend on post-growth heat treatments and cooling profiles. This paper focusses on the evolution of microstructure on annealing, and how this influences the superconducting properties of Rbx_xFe2y_2-ySe2_2 crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb content and increased Fe content compared to the matrix. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phase are strongly facetted on the {113} planes, which we have shown to be driven by minimising the volume strain energy introduced as a result of the phase transformation. Annealing at 488K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c/a ratio and the electronic structure characteristics of the superconducting phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the abstract have been correcte

    Influence of Al on the structure and in vitro behavior of hydroxyapatite nanopowders

    Get PDF
    Nanopowders of aluminum-substituted (0-20 mol %) hydroxyapatite (HA) with the average size of 40-60 nm were synthesized by the precipitation method from nitrate solutions. A series of samples were studied by various analytical tools to elucidate the peculiarities of al introductio

    Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst oxidation state and selectivity

    Get PDF
    In situ core level photoelectron spectroscopy and mass spectrometry have been utilized to study the methanol oxidation on a model RuO2 catalyst at pressures ranging from 10-6 to 10-1 mbar. The experiments were carried out varying the O2/CH3OH molecular mixing ratio from 0.25 to 3.3 and the reaction temperature from 350 to 720 K. The Ru 3d5/2 and O 1s core level spectra were used to characterise the dynamic changes in the Ru oxidation state by exposing the oxide pre-catalyst to different reagents partial pressures and temperatures. Full oxidation to CO2 + H2O or partial oxidation to CO + H2O + H2 have been observed in the whole pressure range for specific reaction conditions, which preserve the oxide catalyst state or reduce the oxide to metallic Ru. The selective oxidation to formaldehyde is observed only at pressures in the 10-1 mbar range, catalyzed by a RuO_x surface oxide formed by partial reduction of the oxide pre-catalyst

    Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field

    Full text link
    We propose a new type of spatially periodic structure, i.e. polaritonic crystal (PolC), to observe a "slow"/"stopped" light phenomenon due to coupled atom-field states (polaritons) in a lattice. Under the tightbinding approximation, such a system realizes an array of weakly coupled trapped two-component atomic ensembles interacting with optical field in a tunnel-coupled one dimensional cavity array. We have shown that the phase transition to the superfluid Bardeen-Cooper-Schrieffer state, a so-called (BCS)-type state of low branch polaritons, occurs under the strong coupling condition. Such a transition results in the appearance of a macroscopic polarization of the atomic medium at non-zero frequency. The principal result is that the group velocity of polaritons depends essentially on the order parameter of the system, i.e. on the average photon number in the cavity array.Comment: 16 pages, 6 figure

    Band alignment and interlayer hybridisation in transition metal dichalcogenide/hexagonal boron nitride heterostructures

    Full text link
    In van der Waals heterostructures, the relative alignment of bands between layers, and the resulting band hybridisation, are key factors in determining a range of electronic properties. This work examines these effects for heterostructures of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (hBN), an ubiquitous combination given the role of hBN as an encapsulating material. By comparing results of density functional calculations with experimental angle-resolved photoemission spectroscopy (ARPES) results, we explore the hybridisation between the valence states of the TMD and hBN layers, and show that it introduces avoided crossings between the TMD and hBN bands, with umklapp processes opening `ghost' avoided crossings in individual bands. Comparison between DFT and ARPES spectra for the MoSe2_2/hBN heterostructure shows that the valence bands of MoSe2_2 and hBN are significantly further separated in energy in experiment as compared to DFT. We then show that a novel scissor operator can be applied to the hBN valence states in the DFT calculations, to correct the band alignment and enable quantitative comparison to ARPES, explaining avoided crossings and other features of band visibility in the ARPES spectra

    Anomalous exponents in the rapid-change model of the passive scalar advection in the order ϵ3\epsilon^{3}

    Full text link
    Field theoretic renormalization group is applied to the Kraichnan model of a passive scalar advected by the Gaussian velocity field with the covariance <v(t,x)v(t,x)>δ(tt)xxϵ - <{\bf v}(t,{\bf x}){\bf v}(t',{\bf x'})> \propto\delta(t-t')|{\bf x}-{\bf x'} |^{\epsilon}. Inertial-range anomalous exponents, related to the scaling dimensions of tensor composite operators built of the scalar gradients, are calculated to the order ϵ3\epsilon^{3} of the ϵ\epsilon expansion. The nature and the convergence of the ϵ\epsilon expansion in the models of turbulence is are briefly discussed.Comment: 4 pages; REVTeX source with 3 postscript figure

    Study of thermal effects of silicate-containing hydroxyapatites

    Get PDF
    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 °С that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state
    corecore