342 research outputs found
High resolution characterisation of microstructural evolution in RbFeSe crystals on annealing
The superconducting and magnetic properties of phase-separated
AFeSe compounds are known to depend on post-growth heat
treatments and cooling profiles. This paper focusses on the evolution of
microstructure on annealing, and how this influences the superconducting
properties of RbFeSe crystals. We find that the minority phase in
the as-grown crystal has increased unit cell anisotropy (c/a ratio), reduced Rb
content and increased Fe content compared to the matrix. The microstructure is
rather complex, with two-phase mesoscopic plate-shaped features aligned along
{113} habit planes. The minority phase are strongly facetted on the {113}
planes, which we have shown to be driven by minimising the volume strain energy
introduced as a result of the phase transformation. Annealing at 488K results
in coarsening of the mesoscopic plate-shaped features and the formation of a
third distinct phase. The subtle differences in structure and chemistry of the
minority phase(s) in the crystals are thought to be responsible for changes in
the superconducting transition temperature. In addition, scanning photoemission
microscopy has clearly shown that the electronic structure of the minority
phase has a higher occupied density of states of the low binding energy Fe3d
orbitals, characteristic of crystals that exhibit superconductivity. This
demonstrates a clear correlation between the Fe-vacancy-free phase with high
c/a ratio and the electronic structure characteristics of the superconducting
phase.Comment: 6 figures v2 is exactly the same as v1. The typesetting errors in the
abstract have been correcte
Influence of Al on the structure and in vitro behavior of hydroxyapatite nanopowders
Nanopowders of aluminum-substituted (0-20 mol %) hydroxyapatite (HA) with the average size of 40-60 nm were synthesized by the precipitation method from nitrate solutions. A series of samples were studied by various analytical tools to elucidate the peculiarities of al introductio
Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst oxidation state and selectivity
In situ core level photoelectron spectroscopy and mass spectrometry have been utilized to study the methanol oxidation on a model RuO2 catalyst at pressures ranging from 10-6 to 10-1 mbar. The experiments were carried out varying the O2/CH3OH molecular mixing ratio from 0.25 to 3.3 and the reaction temperature from 350 to 720 K. The Ru 3d5/2 and O 1s core level spectra were used to characterise the dynamic changes in the Ru oxidation state by exposing the oxide pre-catalyst to different reagents partial pressures and temperatures. Full oxidation to CO2 + H2O or partial oxidation to CO + H2O + H2 have been observed in the whole pressure range for specific reaction conditions, which preserve the oxide catalyst state or reduce the oxide to metallic Ru. The selective oxidation to formaldehyde is observed only at pressures in the 10-1 mbar range, catalyzed by a RuO_x surface oxide formed by partial reduction of the oxide pre-catalyst
Recommended from our members
Some Trends in Radioactive Waste Form Behavior Revealed in Long-Term Field Tests
Results from long-term field tests with borosilicate glass, cement and bitumen waste forms containing actual intermediate-level radioactive waste are summarized and discussed in the paper. Leaching behavior of the waste forms was evaluated by monitoring the contamination of contacting water. Measured leach rates of the three waste-form materials were in a narrow range in shallow subsurface repositories, but varied in a wide range at an open testing site owing to weathering of bitumen and cement materials. The repositories were opened after 12-year testing for visual examination, sampling and analysis. All retrieved waste forms were in good physical condition. The study has not revealed any negative changes in the waste glass. Some ageing processes were detected in cement and bitumen waste forms, which can positively (bitumen) or negatively (cement) affect physical and containment properties of these waste materials. It has been established that a significant proportion of the radioactive inventory in the bitumen waste form became associated with the bitumen phase. Phase separation of this radioactive bitumen has shown, than the asphaltene fraction is responsible for the major part of the radioactivity retained by the bitumen
Strongly localized polaritons in an array of trapped two-level atoms interacting with a light field
We propose a new type of spatially periodic structure, i.e. polaritonic
crystal (PolC), to observe a "slow"/"stopped" light phenomenon due to coupled
atom-field states (polaritons) in a lattice. Under the tightbinding
approximation, such a system realizes an array of weakly coupled trapped
two-component atomic ensembles interacting with optical field in a
tunnel-coupled one dimensional cavity array. We have shown that the phase
transition to the superfluid Bardeen-Cooper-Schrieffer state, a so-called
(BCS)-type state of low branch polaritons, occurs under the strong coupling
condition. Such a transition results in the appearance of a macroscopic
polarization of the atomic medium at non-zero frequency. The principal result
is that the group velocity of polaritons depends essentially on the order
parameter of the system, i.e. on the average photon number in the cavity array.Comment: 16 pages, 6 figure
Band alignment and interlayer hybridisation in transition metal dichalcogenide/hexagonal boron nitride heterostructures
In van der Waals heterostructures, the relative alignment of bands between
layers, and the resulting band hybridisation, are key factors in determining a
range of electronic properties. This work examines these effects for
heterostructures of transition metal dichalcogenides (TMDs) and hexagonal boron
nitride (hBN), an ubiquitous combination given the role of hBN as an
encapsulating material. By comparing results of density functional calculations
with experimental angle-resolved photoemission spectroscopy (ARPES) results, we
explore the hybridisation between the valence states of the TMD and hBN layers,
and show that it introduces avoided crossings between the TMD and hBN bands,
with umklapp processes opening `ghost' avoided crossings in individual bands.
Comparison between DFT and ARPES spectra for the MoSe/hBN heterostructure
shows that the valence bands of MoSe and hBN are significantly further
separated in energy in experiment as compared to DFT. We then show that a novel
scissor operator can be applied to the hBN valence states in the DFT
calculations, to correct the band alignment and enable quantitative comparison
to ARPES, explaining avoided crossings and other features of band visibility in
the ARPES spectra
Anomalous exponents in the rapid-change model of the passive scalar advection in the order
Field theoretic renormalization group is applied to the Kraichnan model of a
passive scalar advected by the Gaussian velocity field with the covariance
. Inertial-range
anomalous exponents, related to the scaling dimensions of tensor composite
operators built of the scalar gradients, are calculated to the order
of the expansion. The nature and the convergence of
the expansion in the models of turbulence is are briefly discussed.Comment: 4 pages; REVTeX source with 3 postscript figure
Study of thermal effects of silicate-containing hydroxyapatites
The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 °С that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state
- …