19,663 research outputs found

    Planar Detonation Wave Initiation in Large-Aspect-Ratio Channels

    Get PDF
    In this study, two initiator designs are presented that are able to form planar detonations with low input energy in large-aspect-ratio channels over distances corresponding to only a few channel heights. The initiators use a single spark and an array of small channels to shape the detonation wave. The first design, referred to as the static initiator, is simple to construct as it consists of straight channels which connect at right angles. However, it is only able to create planar waves using mixtures that can reliably detonate in its small-width channels. An improved design, referred to as the dynamic initiator, is capable of detonating insensitive mixtures using an oxyacetylene gas slug injected into the initiator shortly before ignition, but is more complex to construct. The two versions are presented next, including an overview of their design and operation. Design drawings of each initiator are available elsewhere [7]. Finally, photographs and pressure traces of the resulting planar waves generated by each device are shown

    Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube

    Get PDF
    An analytical model for the impulse of a single-cycle pulse detonation tube has been developed and validated against experimental data. The model is based on the pressure history at the thrust surface of the detonation tube. The pressure history is modeled by a constant pressure portion, followed by a decay due to gas expansion out of the tube. The duration and amplitude of the constant pressure portion is determined by analyzing the gasdynamics of the self-similar flow behind a steadily moving detonation wave within the tube. The gas expansion process is modeled using dimensional analysis and empirical observations. The model predictions are validated against direct experimental measurements in terms of impulse per unit volume, specific impulse, and thrust. Comparisons are given with estimates of the specific impulse based on numerical simulations. Impulse per unit volume and specific impulse calculations are carried out for a wide range of fuel–oxygen–nitrogen mixtures (including aviation fuels) of varying initial pressure, equivalence ratio, and nitrogen dilution. The effect of the initial temperature is also investigated. The trends observed are explained using a simple scaling analysis showing the dependency of the impulse on initial conditions and energy release in the mixture

    Improved AURA k-Nearest Neighbour approach

    Get PDF
    The k-Nearest Neighbour (kNN) approach is a widely-used technique for pattern classification. Ranked distance measurements to a known sample set determine the classification of unknown samples. Though effective, kNN, like most classification methods does not scale well with increased sample size. This is due to their being a relationship between the unknown query and every other sample in the data space. In order to make this operation scalable, we apply AURA to the kNN problem. AURA is a highly-scalable associative-memory based binary neural-network intended for high-speed approximate search and match operations on large unstructured datasets. Previous work has seen AURA methods applied to this problem as a scalable, but approximate kNN classifier. This paper continues this work by using AURA in conjunction with kernel-based input vectors, in order to create a fast scalable kNN classifier, whilst improving recall accuracy to levels similar to standard kNN implementations

    Arthroscopic transosseous rotator cuff repair: A prospective study on cost savings, surgical time, and outcomes

    Get PDF
    Objectives: Health expenditures in the United States are outpacing national income, and affordability has become a major policy issue. Over 500,000 rotator cuff repairs (RCR) are performed annually in the United States making RCR a potential source of cost savings. Arthroscopic trans-osseous equivalent (TOE) repair using a double row of anchors has shown superior biomechanical strength compared to other techniques, but at a higher cost. The arthroscopic transosseous (TO) repair is a novel technique allowing arthroscopic rotator cuff repair to be performed without suture anchors. Arthroscopic TO repair may be a means to provide similarly excellent patient outcomes while lowering the cost of care. The primary purpose is to compare the price differential and time of surgery for an arthroscopic rotator cuff repair using anchorless TO repair verses an anchor trans-osseous equivalent (TOE) repair. A secondary purpose of the study was to evaluate outcomes at 6 months postoperatively. Methods: A prospective, case-controlled study evaluating arthroscopic rotator cuff repair using two techniques was performed. The study group consisting of 21 patients undergoing TO repair was compared to a control group consisting of 22 patients undergoing TOE repair. The groups were controlled for size of tear, biceps treatment, acromioplasty, distal clavicle excision, and labral pathology. The primary outcome measures were surgical time as well as total cost of implants and equipment for each surgery, determined by an independent third party, Atlanticare Hospital. Secondary outcomes were changes in the SST, VAS, and SANE scores. Results: Mean total surgical implant/equipment cost per procedure for TOE repair was 2348.03(SD490.30)andforTOrepairwas2348.03 (SD 490.30) and for TO repair was 1204.97 (SD 330.69; p\u3c0.0001). Mean cut to close time for TOE repair was 85 minutes (95% CI is 77-90) verses 74 (95% CI = 71-98) for TO repair. A log rank test revealed no difference in time (p =0.95). A linear regression model was developed to evaluate the change in SST, VAS, and SANE scores from pre-op to 6 months follow-up. Our study was underpowered but no difference in outcome was observed. Conclusion: Arthroscopic TO rotator cuff repair is a cost savings and time neutral technique compared to TOE repair. A mean of $1100 can be saved in surgical cost per case. In a country that performs over 500,000 RCRs annually, utilizing a TO repair technique can provide substantial cost savings to the healthcare system. © The Author(s) 2015

    A Definition of a Natural Oyster Rock

    Get PDF

    Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider

    Get PDF
    The Migidae are a family of austral trapdoor spiders known to show a highly restricted and disjunct distribution pattern. Here, we aim to investigate the phylogeny and historical biogeography of the group, which was previously thought to be vicariant in origin, and examine the biogeographic origins of the genus Moggridgea using a dated multi-gene phylogeny. Moggridgea specimens were sampled from southern Australia and Africa, and Bertmainus was sampled from Western Australia. Sanger sequencing methods were used to generate a robust six marker molecular dataset consisting of the nuclear genes 18S rRNA, 28S rRNA, ITS rRNA, XPNPEP3 and H3 and the mitochondrial gene COI. Bayesian and Maximum Likelihood methods were used to analyse the dataset, and the key dispersal nodes were dated using BEAST. Based on our data, we demonstrate that Moggridgea rainbowi from Kangaroo Island, Australia is a valid member of the otherwise African genus Moggridgea. Molecular clock dating analyses show that the inter-specific divergence of M. rainbowi from African congeners is between 2.27-16.02 million years ago (Mya). This divergence date significantly post-dates the separation of Africa from Gondwana (95 Mya) and therefore does not support a vicariant origin for Australian Moggridgea. It also pre-dates human colonisation of Kangaroo Island, a result which is further supported by the intra-specific divergence date of 1.10-6.39 Mya between separate populations on Kangaroo Island. These analyses provide strong support for the hypothesis that Moggridgea colonised Australia via long-distance trans-Indian Ocean dispersal, representing the first such documented case in a mygalomorph spider.Sophie E. Harrison, Mark S. Harvey, Steve J. B. Cooper, Andrew D. Austin, Michael G. Ri

    The Virginian Oyster

    Get PDF
    • 

    corecore