4,979 research outputs found

    X-ray Properties of Radio-Selected Dual Active Galactic Nuclei

    Get PDF
    Merger simulations predict that tidally induced gas inflows can trigger kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments. Previously with the Very Large Array, we have confirmed four dAGN with redshifts between 0.04<z<0.220.04 < z < 0.22 and projected separations between 4.3 and 9.2 kpc in the SDSS Stripe 82 field. Here, we present ChandraChandra X-ray observations that spatially resolve these dAGN and compare their multi-wavelength properties to those of single AGN from the literature. We detect X-ray emission from six of the individual merger components and obtain upper limits for the remaining two. Combined with previous radio and optical observations, we find that our dAGN have properties similar to nearby low-luminosity AGN, and they agree well with the black hole fundamental plane relation. There are three AGN-dominated X-ray sources, whose X-ray hardness-ratio derived column densities show that two are unobscured and one is obscured. The low obscured fraction suggests these dAGN are no more obscured than single AGN, in contrast to the predictions from simulations. These three sources show an apparent X-ray deficit compared to their mid-infrared continuum and optical [OIII] line luminosities, suggesting higher levels of obscuration, in tension with the hardness-ratio derived column densities. Enhanced mid-infrared and [OIII] luminosities from star formation may explain this deficit. There is ambiguity in the level of obscuration for the remaining five components since their hardness ratios may be affected by non-nuclear X-ray emissions, or are undetected altogether. They require further observations to be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical Journa

    Entanglement and quantum phase transitions

    Full text link
    We examine several well known quantum spin models and categorize behavior of pairwise entanglement at quantum phase transitions. A unified picture on the connection between the entanglement and quantum phase transition is given.Comment: 4 pages, 3 figure

    The difference of boundary effects between Bose and Fermi systems

    Full text link
    In this paper, we show that there exists an essential difference of boundary effects between Bose and Fermi systems both for Dirichlet and Neumann boundary conditions: at low temperatures and high densities the influence of the boundary on the Bose system depends on the temperature but is independent of the density, but for the Fermi case the influence of the boundary is independent of the temperature but depends on the density, after omitting the negligible high-order corrections. We also show that at high temperatures and low densities the difference of the influence of the boundary between Bose and Fermi systems appears in the next-to-leading order boundary contribution, and the leading boundary contribution is independent of the density. Moreover, for calculating the boundary effects at high temperatures and low densities, since the existence of the boundary modification causes the standard virial expansion to be invalid, we introduce a modified virial expansion.Comment: 8 page

    A Comprehensive View of a Strongly Lensed Planck-Associated Submillimeter Galaxy

    Get PDF
    We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9–001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 μm flux density (~300 mJy). It is the only high-redshift Planck detection in the 130 deg^2 H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 μm and CO(1→0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over ~1.6 kpc, the dust in a compact (~1 kpc) region ~3 kpc north of the stars, and the cold molecular gas in an extended (~7 kpc) disk ~5 kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by ~17, ~8, and ~7 times, respectively, by four lensing galaxies at z ~ 1. Intrinsically, the lensed galaxy is a warm (T_(dust) ~ 40-65 K), hyper-luminous (L_(IR) ~ 1.7 × 10^(13) L_☉; star formation rate (SFR) ~2000 M_☉ yr^(–1)), gas-rich (M_(gas)/M_(baryon) ~ 70%), young (M_(stellar)/SFR ~ 20 Myr), and short-lived (M_(gas)/SFR ~ 40 Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9–001132 offers a detailed view of a typical SMG through a powerful cosmic microscope

    Spinodal nanodecomposition in magnetically doped semiconductors

    Full text link
    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, co-doping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear either in the form of nanodots (the {\em dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure

    Fidelity susceptibility, scaling, and universality in quantum critical phenomena

    Full text link
    We study fidelity susceptibility in one-dimensional asymmetric Hubbard model, and show that the fidelity susceptibility can be used to identify the universality class of the quantum phase transitions in this model. The critical exponents are found to be 0 and 2 for cases of half-filling and away from half-filling respectively.Comment: 4 pages, 4 figure

    Anomalous Meissner effect in pnictide superconductors

    Get PDF
    The Meissner effect has been studied in Ba(Fe0.926Co0.074)2As2 and Ba0.6K0.4Fe2As2 single crystals and compared to well known, type-II superconductors LuNi2B2C and V3Si. Whereas flux penetration is mostly determined by the bulk pinning (and, perhaps, surface barrier) resulting in a large negative magnetization, the flux expulsion upon cooling in a magnetic field is very small, which could also be due to pinning and/or surface barrier effects. However, in stark contrast with the expected behavior, the amount of the expelled flux increases almost linearly with the applied magnetic field, at least up to our maximum field of 5.5 T, which far exceeds the upper limit for the surface barrier. One interpretation of the observed behavior is that there is a field-driven suppression of magnetic pair-breaking

    Quantum criticality of the Lipkin-Meshkov-Glick Model in terms of fidelity susceptibility

    Full text link
    We study the critical properties of the Lipkin-Meshkov-Glick Model in terms of the fidelity susceptibility. By using the Holstein-Primakoff transformation, we obtain explicitly the critical exponent of the fidelity susceptibility around the second-order quantum phase transition point. Our results provide a rare analytical case for the fidelity susceptibility in describing the universality class in quantum critical behavior. The different critical exponents in two phases are non-trivial results, indicating the fidelity susceptibility is not always extensive.Comment: 3 figure
    corecore