211 research outputs found
\u3ci\u3eScaptomyza nigrita\u3c/i\u3e Wheeler (Diptera: Drosophilidae), a Leaf Miner of the Native Crucifer, \u3ci\u3eCardamine cordifolia\u3c/i\u3e A. Gray (Bittercress)
The biology of Scaptomyza nigrita on its host plant, a native crucifer (Bittercress) in the Rocky Mountains, is described. Development of each stage in the life history was studied both in the field and in the laboratory. This is the first documentation of a host for S. nigrita. We examined the activity of adult flies in two adjacent habitats, sun and adjacent willow shade. Adult flies were more abundant on bittercress plants in sun-exposed versus in shaded areas, and were most active from mid-day to late afternoon. Female flies were significantly larger than male flies, but there were no differences in size of adults between the two habitats. Larval damage to bittercress is generally much greater on plants in sunny areas than on those in the shade, possibly due to the increased activity of ovipositing flies in sun-exposed areas
Patterns of Resource Use by a Drosophilid (Diptera) Leaf Miner on a Native Crucifer
Distribution and damage of Scaptomyza nigrita Wheeler on its host (bittercress, Cardamine cordifolia A. Gray), a native perennial crucifer, were examined over two growing seasons in relation to leaf position. Concentrations of defensive compounds (glucosinolates) and of nutritive compounds (total nitrogen, free amino acids, soluble carbohydrates) were also examined. The fly-host plant relationship was studied in sun and shade habitats at two sites. Oviposition and leaf-mining damage were concentrated on the lower central leaves of a stem in both habitats. These mature leaves have lower glucosinolate concentrations than new leaves. Adult densities and larval feeding damage were consistently and significantly greater on plants in the sun than on those in the shade. Higher S. nigrita densities in the sun habitat and slightly higher soluble carbohydrate concentrations in sun leaves at the beginning of the growing season, rather than variation in defensive glucosinolate levels, are the most likely mechanisms determining higher levels of leaf mining on host plants in the sun habitat
Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore
Spatial and temporal variation in insect floral herbivory is common and often important. Yet, the determinants of such variation remain incompletely understood. Using 12 years of flowering data and 4 years of biweekly insect counts, we evaluated four hypotheses to explain variation in damage by the Eurasian flower head weevil, Rhinocyllus conicus, to the native North American wavyleaf thistle, Cirsium undulatum. The four factors hypothesized to influence weevil impact were variations in climate, weevil abundance, phenological synchrony, and number of flower heads available, either on wavyleaf thistle or on the other co-occurring, acquired native host plant (Platte thistle, Cirsium canescens), or on both. Climate did not contribute significantly to an explanation of variation in R. conicus damage to wavyleaf thistle. However, climate did influence weevil synchrony with wavyleaf flower head initiation, and phenological synchrony was important in determining R. conicus oviposition levels on wavyleaf thistle. The earlier R. conicus was active, the less it oviposited on wavyleaf thistle, even when weevils were abundant. Neither weevil abundance nor availability of wavyleaf flower heads predicted R. conicus egg load. Instead, the strongest predictor of R. conicus egg load on wavyleaf thistle was the availability of flower heads on Platte thistle, the more common, earlier flowering native thistle in the sand prairie. Egg load on wavyleaf thistle decreased as the number of Platte thistle flower heads at a site increased. Thus, wavyleaf thistle experienced associational defense in the presence of flowering by its now declining native congener, Platte thistle. These results demonstrate that prediction of damage to a native plant by an exotic insect may require knowledge of both likely phenological synchrony and total resource availability to the herbivore, including resources provided by other nontarget native species
Seed availability and insect herbivory limit recruitment and adult density of native tall thistle
Understanding spatial and temporal variation in factors influencing plant regeneration is critical to predicting plant population growth. We experimentally evaluated seed limitation, insect herbivory, and their interaction in the regeneration and density of tall thistle (Cirsium altissimum) across a topographic ecosystem productivity gradient in tallgrass prairie over two years. On ridges and in valleys, we used a factorial experiment manipulating seed availability and insect herbivory to quantify effects of: seed input on seedling density, insect herbivory on juvenile density, and cumulative impacts of both seed input and herbivory on reproductive adult density. Seed addition increased seedling densities at three of five sites in 2006 and all five sites in 2007. Insect herbivory reduced seedling survival across all sites in both years, as well as rosette survival from the previous year’s seedlings. In both years, insecticide treatment of seed addition plots led to greater adult tall thistle densities in the following year, reflecting the increase in juvenile thistle densities in the experimental year. Seedling survival was not density dependent. Our analytical projection model predicts a significant long-term increase in adult densities from seed input, with a greater increase under experimentally reduced insect herbivory. While plant community biomass and water stress varied significantly between ridges and valleys, the effects of seed addition and insect herbivory did not vary with gradient position. These results support conceptual models that predict seedling and adult densities of short-lived monocarpic perennial plants should be seed limited. Further, the experiment demonstrates that even at high juvenile plant densities, at which density dependence potentially could have overridden herbivore effects on plant survival, insect herbivory strongly affected juvenile thistle performance and adult densities of this native prairie species
Abundance of a chlorophyll a precursor and the oxidation product hydroxychlorophyll a during seasonal phytoplankton community progression in the Western English Channel
This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, www.westernchannelobservatory.org) over an annual cycle (2012). Weekly measurements of phytoplankton species composition and abundance enabled detailed analysis of possible sources of hydroxychlorophyll a. Dinoflagellates, 2 diatom species, the prymnesiophyte Phaeocystis spp. and the coccolithophorid Emiliania huxleyi were all associated with hydroxychlorophyll a occurrence. However, during alternate peaks in abundance of the diatoms, no association with hydroxychlorophyll a occurred, indicating that the oxidation of chlorophyll a was dependant not only on species but also on additional factors such as the mode of mortality, growth limiting factor (i.e. nutrient concentration) or phenotypic plasticity. Surface sediment samples contained 10 times more hydroxychlorophyll a (relative to chlorophyll a) than pelagic particulate samples, indicating that more chlorophyll a oxidation occurred during sedimentation or at the sediment-water interface, than in the pelagic environment. In addition, chlorophyll aP276 correlated with chl-a concentration, thus supporting its assignment as a chl-a precursor
- …