810 research outputs found

    A Spitzer Study of Interacting Luminous and Ultra-Luminous Infrared Galaxies

    Full text link
    We conducted a Spitzer Space Telescope survey of 28 Luminous (11 < log(LIR/L_odot) < 12, LIRGs) and Ultra-Luminous Infrared Galaxies (log(LIR/L_odot) > 12, ULIRGs). Many of these galaxies are found in pairs or associations and are powered by either nuclear activity or starformation (Sanders & Mirabel 1996). Our main goal is to understand the relative importance of starbursts and AGNs in interacting systems. Is the frequency of AGN and starbursts in these interacting galaxies related to their luminosities? What is the importance of the merger stage and the frequency of AGNs? We present our conclusions and diagnostic diagrams based in the observed near infrared lines and compare to studies based solely in optical data.Comment: 3 pages, 2 figures, to appear in the Spectral Energy Distribution of Galaxies (SED2011) conference proceedings, Preston, UK, 201

    Transformations between the theoretical and observational planes in the HST-NICMOS and WFPC2 photometric systems

    Get PDF
    Color-temperature relations and bolometric corrections in the HST-NICMOS F1110W, F160W and F222M and in the WFPC2 F439W, F555W and F814W photometric systems, using two different sets of model atmospheres, have been derived. This database of homogeneous, self-consistent transformations between the theoretical and observational planes also allows combinations of visual and infrared quantities, without any further transformation between the two different photometric systems. The behavior of the inferred quantities with varying the stellar parameters, the adopted model atmospheres and the instrumental configurations are investigated. Suitable relations to transform colors and bolometric corrections from HST to ground-based photometric systems are also provided.Comment: 22 pages, 14 figure

    Modeling charge transport in C60-based self-assembled monolayers for applications in field-effect transistors

    Get PDF
    We have investigated the conductance properties of C60-containing self-assembled monolayers (SAMs), which are used in organic field-effect transistors, employing a combination of molecular-dynamics simulations, semiempirical electronic structure calculations and Landauer transport theory. The results reveal the close relation between the transport characteristics and the structural and electronic properties of the SAM. Furthermore, both local pathways of charge transport in the SAMs and the influence of structural fluctuations are analyzed.Comment: 10 figure

    Modelling the Pan-Spectral Energy Distributions of Starburst & Active Galaxies

    Full text link
    We present results of a self-consistent model of the spectral energy distribution (SED) of starburst galaxies. Two parameters control the IR SED, the mean pressure in the ISM and the destruction timescale of molecular clouds. Adding a simplified AGN spectrum provides mixing lines on IRAS color : color diagrams. This reproduces the observed colors of both AGNs and starbursts.Comment: Poster Paper for IAU 222: The Interplay among Black Holes, Stars and ISM in Galactic Nucle

    Comparison of Theoretical Starburst Photoionisation Models for Optical Diagnostics

    Get PDF
    We study and compare different examples of stellar evolutionary synthesis input parameters used to produce photoionisation model grids using the MAPPINGS V modelling code. The aim of this study is to (a) explore the systematic effects of various stellar evolutionary synthesis model parameters on the interpretation of emission lines in optical strong-line diagnostic diagrams, (b) characterise the combination of parameters able to reproduce the spread of local galaxies located in the star-forming region in the Sloan Digital Sky Survey, and (c) investigate the emission from extremely metal-poor galaxies using photoionisation models. We explore and compare the stellar input ionising spectrum (stellar population synthesis code [Starburst99, SLUG, BPASS], stellar evolutionary tracks, stellar atmospheres, star-formation history, sampling of the initial mass function) as well as parameters intrinsic to the H II region (metallicity, ionisation parameter, pressure, H II region boundedness). We also perform a comparison of the photoionisation codes MAPPINGS and CLOUDY. On the variations in the ionising spectrum model parameters, we find that the differences in strong emission-line ratios between varying models for a given input model parameter are small, on average ~0.1 dex. An average difference of ~0.1 dex in emission-line ratio is also found between models produced with MAPPINGS and CLOUDY. Large differences between the emission-line ratios are found when comparing intrinsic H II region parameters. We find that low-metallicity galaxies are better explained by a density-bounded H II region and higher pressures better encompass the spread of galaxies at high redshift.Comment: 33 pages, 26 figures, accepted for publication in Ap

    The Luminosity Function of Young Star Clusters In "The Antennae" Galaxies (NGC 4038/4039)

    Get PDF
    The WFPC2 of the HST has been used to obtain high-resolution images of NGC 4038/4039 that go roughly 3 magnitudes deeper in V than previous observations made during Cycle 2 (-14 < M_V < -6). To first order the luminosity function (LF) is a power law, with exponent \alpha = -2.12 +/- 0.04. However, after decoupling the cluster and stellar LFs, which overlap in the range -9 < M_V < -6, we find an apparent bend in the young cluster LF at approximately M_V = -10.4. The LF has a power law exponent -2.6 +/- 0.2 in the brightward and -1.7 +/- 0.2 in the faintward. The bend corresponds to a mass ~ 10^5 M_{\odot}, only slightly lower than the characteristic mass of globular clusters in the Milky Way (~2x10^5 M_{\odot}). The star clusters of the Antennae appear slightly resolved, with median effective radii of 4 +/- 1 pc, similar to or perhaps slightly larger than those of globular clusters in our Galaxy. However, the radial extents of some of the very young clusters (ages < 10 Myr) are much larger than those of old globular clusters. A combination of the UBVI colors, \Halpha morphology, and GHRS spectra enables us to age-date the clusters in different regions of The Antennae. We find two groups of young star clusters with ages <~ 20Myr and ~100Myr, as well as an intermediate-age group (~500 Myr) and a handful of old globular clusters from the progenitor galaxies. Age estimates derived from GHRS spectroscopy yield 3 +/- 1 Myr for Knot K (just south of the nucleus of NGC 4038) and 7 +/- 1 Myr for Knot S in the Western Loop, in good agreement with ages derived from the UBVI colors. Effective gas-outflow velocities from Knots S and K are estimated to be about 25-30 km/s. However, the measured widths of the interstellar absorption lines suggest dispersion velocities of ~400 km/s along the lines of sight to Knots S and K.Comment: 56 pages, 4 tables and 23 figures, texts in AAS style, to be published in A

    Electric-field control of a single-atom polar bond

    Full text link
    The polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) is exposed to an external electric field. For one field orientation the Au-C bond is strong enough to sustain the mechanical load of partially detached graphene, whilst for the opposite orientation the bond breaks easily. Calculations based on density functional theory and nonequilibrium Green's function methods support the experimental observations by unveiling bond forces that reflect the polar character of the bond. Field-induced charge transfer between the atomic orbitals modifies the polarity of the different electronegative reaction partners and the Au-C bond strength
    corecore