166 research outputs found

    Circular dichroism and bilayer splitting in the normal state of underdoped (Pb,Bi)2_2Sr2_2(Cax_xY1x_{1-x})Cu2_2O8+δ_{8+\delta} and overdoped (Pb,Bi)2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    We report an ARPES investigation of the circular dichroism in the first Brillouin zone (BZ) of under- and overdoped Pb-Bi2212 samples. We show that the dichroism has opposite signs for bonding and antibonding components of the bilayer-split CuO-band and is antisymmetric with respect to reflections in both mirror planes parallel to the c-axis. Using this property of the energy and momentum intensity distributions we prove the existence of the bilayer splitting in the normal state of the underdoped compound and compare its value with the splitting in overdoped sample. In agreement with previous studies the magnitude of the interlayer coupling does not depend significantly on doping. We also discuss possible origins of the observed dichroism.Comment: 4 RevTex pages, 4 EPS figure

    Surprises in the doping dependence of the Fermi surface in Bi(Pb)-2212

    Full text link
    A detailed and systematic ARPES investigation of the doping-dependence of the normal state Fermi surface (FS) of modulation-free (Pb,Bi)-2212 is presented. The FS does not change in topology away from hole-like at any stage. The data reveal, in addition, a number of surprises. Firstly the FS area does not follow the usual curve describing Tc vs x for the hole doped cuprates, but is down-shifted in doping by ca. 0.05 holes per Cu site, indicating either the break-down of Luttinger's theorem or the consequences of a significant bi-layer splitting of the FS. Secondly, the strong k-dependence of the FS width is shown to be doping independent. Finally, the relative strength of the shadow FS has a doping dependence mirroring that of Tc.Comment: 5 pages, 4 figures (revtex

    Sustainable Urban Transformation and the Green Urban Economy

    Get PDF
    This chapter explores the connections between the concepts of sustainable urban transformation and the green urban economy, proposes a framework for understanding how these concepts “fit” together, and makes some practical suggestions for local governments (and national and international policy)

    Proof for trivalent Sc ions in Sc2@C84 from high-energy spectroscopy

    Get PDF
    The electronic structure and the valency of the Sc ions in the endohedral dimetallofullerene Sc 2 @C 84 with D 2d symmetry are probed using high-energy spectroscopy. Comparison of the Sc 2p ! 3d x-ray-absorption spectrum with calculated ionic multiplet spectra shows that the Sc ions are trivalent. Detailed multiplet calcu-lations including covalency indicate that the effective valency of the Sc~III! ions can be described by a formal charge transfer to the fullerene cage of 2.660.1. This illustrates that a purely ionic picture is not valid for the electronic structure of Sc 2 @C 84 , and that a more complex picture including finite hybridization between the Sc and the fullerene cage has to be applied

    The normal state Fermi surface of pristine and Pb-doped Bi2212 from ARPES measurements and its photon energy independence

    Get PDF
    We address the question as to whether the topology of the normal state Fermi surface of Bi2212 - as seen in angle resolved photoemission - depends on the photon energy used to measure it. High resolution photoemission spectra and Fermi surface maps from pristine and Pb-doped Bi2212 are presented, recorded using both polarised and unpolarised radiation of differing energies. The data show clearly that no main band crosses the Fermi surface along the GMZ direction in reciprocal space, even for a photon energy of 32 eV, thus ruling out the existence of a G-centred, electron-like Fermi surface in this archetypal high Tc superconductor. The true topology of the normal state Fermi surface remains that of hole-like barrels centred at the X,Y points of the Brillouin zone.Comment: 4 pages (revtex), 4 figures (jpg

    Superconducting gap in the presence of bilayer splitting in underdoped Bi(Pb)2212

    Full text link
    The clearly resolved bilayer splitting in ARPES spectra of the underdoped Pb-Bi2212 compound rises the question of how the bonding and antibonding sheets of the Fermi surface are gapped in the superconducting state. Here we compare the superconducting gaps for both split components and show that within the experimental uncertainties they are identical. By tuning the relative intensity of the bonding and antibonding bands using different excitation conditions we determine the precise {\bf k}-dependence of the leading edge gap. Significant deviations from the simple cos(kxk_{x})-cos(kyk_{y}) gap function for the studied doping level are detected.Comment: 5 pages, 4 figures (revtex4

    ARPES study of Pb doped Bi_2Sr_2CaCu_2O_8 - a new Fermi surface picture

    Full text link
    High resolution angle resolved photoemission data from Pb doped Bi_2Sr_2CaCu_2O_8 (Bi2212) with suppressed superstructure is presented. Improved resolution and very high momentum space sampling at various photon energies reveal the presence of two Fermi surface pieces. One has the hole-like topology, while the other one has its van Hove singularity very close to (pi,0), its topology at some photon energies resembles the electron-like piece. This result provides a unifying picture of the Fermi surface in the Bi2212 compound and reconciles the conflicting reports.Comment: 4 pages, 4 figure

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    Instantaneous velocity field imaging instrument for supersonic reacting flows

    Get PDF
    The technical tasks conducted to develop and demonstrate a new gas velocity measurement technique for high enthalpy reacting flows is described. The technique is based on Doppler-shifted Planar Laser-induced Fluorescence (PLIF) imaging of the OH radical. The imaging approach permits, in principle, single-shot measurements of the 2-D distribution of a single velocity component in the measurement plane, and is thus a technique of choice for applications in high enthalpy transient flow facilities. In contrast to previous work in this area, the present program demonstrated an approach which modified the diagnostic technique to function under the constraints of practical flow conditions of engineering interest, rather than vice-versa. In order to accomplish the experimental demonstrations, the state-of-the-art in PLIF diagnostic techniques was advanced in several ways. Each of these tasks is described in detail and is intended to serve as a reference in supporting the transition of this new capability to the fielded PLIF instruments now installed at several national test facilities. Among the new results of general interest in LlF-based flow diagnostics, a detailed set of the first measurements of the collisional broadening and shifting behavior of OH (1,0) band transitions in H7-air combustion environments is included. Such measurements are critical in the design of a successful strategy for PLIF velocity imaging; they also relate to accurate concentration and temperature measurements, particularly in compressible flow regimes. Furthermore, the results shed new light on the fundamental relationship between broadening and energy transfer collisions in OH A(sup 2)Sigma(+)v(sup ') = 1. The first single-pulse, spectrally-resolved measurements of the output of common pulsed dye lasers were also produced during the course of this effort. As with the OH broadening measurements, these data are a significant aspect of a successful velocity imaging strategy, and also have potential implications for many other LIF measurement techniques. Our results indicated the need to modify the commercially available laser cavity in order to accommodate the constraints imposed by typical SCRAMJET combustion characteristics as well as to increase the instrument's velocity dynamic range to span an intra-image range in excess of 2 km/s. The various technical efforts were brought together in a series of experiments demonstrating the applicability of the technique in a high pressure, high temperature H2-air combustion system. The resultant images were compared with 2-D flow simulations in order to determine the accuracy of the instrument. Mean velocity imaging in flows with an axis of symmetry was demonstrated with an accuracy of +/- 50 m/s out of an intra-image dynamic range of 1600 m/s, including reversed flow. A more complex configuration amenable to single-shot imaging in flows without an axis of symmetry was also demonstrated. Limitations imposed by available equipment resulted in an accuracy of about +/- 200 m/s out of 1750 m/s in these demonstrations. Minor modifications to the present configuration were suggested to improve this performance. Each technical task is described in detail, along with significance of the results for the overall imaging velocimeter configuration. This report should allow the user community to integrate this new measurement capability in their existing instrumentation platforms
    corecore