2,084 research outputs found

    Assessing the Quality of Democracy: A Practical Guide

    Get PDF

    CO oxidation on a single Pd atom supported on magnesia

    Full text link
    The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass-spectrometry and infrared spectroscopy. In one-heating-cycle experiments CO2_2, formed from O2_2 and CO preadsorbed at 90 K, is detected at 260 K and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)2_2O2_2 and Pd(CO3_3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.Comment: 4 pages, 3 figures, scheduled for publication in PRL 18 June 200

    Edge and bulk components of lowest-Landau-level orbitals, correlated fractional quantum Hall effect incompressible states, and insulating behavior in finite graphene samples

    Full text link
    Many-body calculations of the total energy of interacting Dirac electrons in finite graphene samples exhibit joint occurrence of cusps at angular momenta corresponding to fractional fillings characteristic of formation of incompressible (gapped) correlated states (nu=1/3 in particular) and opening of an insulating energy gap (that increases with the magnetic field) at the Dirac point, in correspondence with experiments. Single-particle basis functions obeying the zigzag boundary condition at the sample edge are employed in exact diagonalization of the interelectron Coulomb interaction, showing, at all sizes, mixed equal-weight bulk and edge components. The consequent depletion of the bulk electron density attenuates the fractional-quantum-Hall-effect excitation energies and the edge charge accumulation results in a gap in the many-body spectrum.Comment: 8 pages with 7 figures. REVTEX4. For related publications, see http://www.prism.gatech.edu/~ph274c

    Loss of pRB and p107 disrupts cartilage development and promotes enchondroma formation

    Get PDF
    The pocket proteins pRB, p107 and p130 have established roles in regulating the cell cycle through the control of E2F activity. The pocket proteins regulate differentiation of a number of tissues in both cell cycle-dependent and -independent manners. Prior studies showed that mutation of p107 and p130 in the mouse leads to defects in cartilage development during endochondral ossification, the process by which long bones form. Despite evidence of a role for pRB in osteoblast differentiation, it is unknown whether it functions during cartilage development. Here, we show that mutation of Rb in the early mesenchyme of p107-mutant mice results in severe cartilage defects in the growth plates of long bones. This is attributable to inappropriate chondrocyte proliferation that persists after birth and leads to the formation of enchondromas in the growth plates as early as 8 weeks of age. Genetic crosses show that development of these tumorigenic lesions is E2f3 dependent. These results reveal an overlapping role for pRB and p107 in cartilage development, endochondral ossification and enchondroma formation that reflects their coordination of cell-cycle exit at appropriate developmental stages.Virginia and D.K. Ludwig Fund for Cancer Research (Fellowship)National Cancer Institute (U.S.) (Grant CA121921

    A short-range weather prediction system for South Africa based on a multi-model approach

    Get PDF
    The accurate prediction of rainfall events, in terms of their timing, location and rainfall depth, is important to a wide range of social and economic applications. At many operational weather prediction centres, as is also the case at the South African Weather Service, forecasters use deterministic model outputs as guidance to produce subjective probabilistic rainfall forecasts. The aim of this research was to determine the skill of a new objective multi-model, multi-institute probabilistic ensemble forecast system for South Africa. Such forecasts are obtained by combining the rainfall forecasts of 2 operational high-resolution regional atmospheric models in South Africa. The first model is the Unified Model (UM), which is operational at the South African Weather Service. The UM contributes 3 ensemble members, each with a different physics scheme, data assimilation techniques and horizontal resolution. The second model is the Conformal-Cubic Atmospheric Model (CCAM) which is operational at the Council for Scientific and Industrial Research, which in turn contributed 2 members to the ensemble system based on different horizontal resolutions. A single-model ensemble forecast, with each of the ensemble members having equal weights, was constructed for the UM and CCAM models, respectively. These UM and CCAM single-model ensemble predictions are then combined into a multi-model ensemble prediction, using simple un-weighted averaging. The probabilistic forecasts produced by the single-model system as well as the multi-model system have been tested against observed rainfall data over 3 austral summer 6-month periods from 2006/07 to 2008/09, using the Brier skill score, relative operating characteristics, and the reliability diagram. The forecast system was found to be more skilful than the persistence forecast. Moreover, the system outscores the forecast skill of the individual models

    Modelling of boundary plasma in TOKES

    Get PDF

    Edge states in graphene quantum dots: Fractional quantum Hall effect analogies and differences at zero magnetic field

    Full text link
    We investigate the way that the degenerate manifold of midgap edge states in quasicircular graphene quantum dots with zig-zag boundaries supports, under free-magnetic-field conditions, strongly correlated many-body behavior analogous to the fractional quantum Hall effect (FQHE), familiar from the case of semiconductor heterostructures in high magnetic fields. Systematic exact-diagonalization (EXD) numerical studies are presented for the first time for 5 <= N <= 8 fully spin-polarized electrons and for total angular momenta in the range of N(N-1)/2 <= L <= 150. We present a derivation of a rotating-electron-molecule (REM) type wave function based on the methodology introduced earlier [C. Yannouleas and U. Landman, Phys. Rev. B 66, 115315 (2002)] in the context of the FQHE in two-dimensional semiconductor quantum dots. The EXD wave functions are compared with FQHE trial functions of the Laughlin and the derived REM types. It is found that a variational extension of the REM offers a better description for all fractional fillings compared with that of the Laughlin functions (including total energies and overlaps), a fact that reflects the strong azimuthal localization of the edge electrons. In contrast with the multiring arrangements of electrons in circular semiconductor quantum dots, the graphene REMs exhibit in all instances a single (0,N) polygonal-ring molecular (crystalline) structure, with all the electrons localized on the edge. Disruptions in the zig-zag boundary condition along the circular edge act effectively as impurities that pin the electron molecule, yielding single-particle densities with broken rotational symmetry that portray directly the azimuthal localization of the edge electrons.Comment: Revtex. 14 pages with 13 figures and 2 tables. Physical Review B, in press. For related papers, see http://www.prism.gatech.edu/~ph274cy

    Seasonal rainfall predictability over the Lake Kariba catchment area

    Get PDF
    The Lake Kariba catchment area in southern Africa has one of the most variable climates of any major river basin, with an extreme range of conditions across the catchment and through time. Marked seasonal and interannual fluctuations in rainfall are a significant aspect of the catchment. To determine the predictability of seasonal rainfall totals over the Lake Kariba catchment area, this study used the low-level atmospheric circulation (850 hPa geopotential height fields) of a coupled ocean-atmosphere general circulation model (CGCM) over southern Africa, statistically  downscaled to gridded seasonal rainfall totals over the catchment. This downscaling configuration was used to retroactively forecast the 3-month rainfall seasons of September-October-November through February-March-April, over a 14-year independent test period extending from 1994. Retroactive forecasts are produced for lead times of up to 5 months and probabilistic forecast performances evaluated for extreme rainfall  thresholds of the 25th and 75th percentile values of the climatological record. The verification of the retroactive forecasts shows that rainfall over the catchment is predictable at extended lead-times, but that predictability is primarily found for austral mid-summer rainfall. This season is also associated with the highest potential economic value that can be derived from seasonal forecasts. A forecast case study of a recent extreme rainfall season (2010/11) that lies outside of the verification period is presented as evidence of the statistical downscaling system’s operational capability.Keywords: Lake Kariba catchment, coupled ocean-atmosphere model, statistical downscaling, seasonal forecasting, economic valu
    corecore