2,324 research outputs found
Prethermalization without Temperature
While a clean, driven system generically absorbs energy until it reaches "infinite temperature," it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for nontrivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethernial regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localized cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al. [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude
Optimal compression of constrained quantum time evolution
The time evolution of quantum many-body systems is one of the most promising
applications for near-term quantum computers. However, the utility of current
quantum devices is strongly hampered by the proliferation of hardware errors.
The minimization of the circuit depth for a given quantum algorithm is
therefore highly desirable, since shallow circuits generally are less
vulnerable to decoherence. Recently, it was shown that variational circuits are
a promising approach to outperform current state-of-the-art methods such as
Trotter decomposition, although the optimal choice of parameters is a
computationally demanding task. In this work, we demonstrate a simplification
of the variational optimization of circuits implementing the time evolution
operator of local Hamiltonians by directly encoding constraints of the physical
system under consideration. We study the expressibility of such constrained
variational circuits for different models and constraints. Our results show
that the encoding of constraints allows a reduction of optimization cost by
more than one order of magnitude and scalability to arbitrary large system
sizes, without loosing accuracy in most systems. Furthermore, we discuss the
exceptions in locally-constrained systems and provide an explanation by means
of an restricted lightcone width after incorporating the constraints into the
circuits.Comment: 16 pages, 17 figure
C and S induces changes in the electronic and geometric structure of Pd(533) and Pd(320)
We have performed ab initio electronic structure calculations of C and S
adsorption on two vicinal surfaces of Pd with different terrace geometry and
width. We find both adsorbates to induce a significant perturbation of the
surface electronic and geometric structure of Pd(533) and Pd(320). In
particular C adsorbed at the bridge site at the edge of a Pd chain in Pd(320)
is found to penetrate the surface to form a sub-surface structure. The
adsorption energies show almost linear dependence on the number of
adsorbate-metal bonds, and lie in the ranges of 5.31eV to 8.58eV for C and
2.89eV to 5.40eV for S. A strong hybridization between adsorbate and surface
electronic states causes a large splitting of the bands leading to a drastic
decrease in the local densities of electronic states at the Fermi-level for Pd
surface atoms neighboring the adsorbate which may poison catalytic activity of
the surface. Comparison of the results for Pd(533) with those obtained earlier
for Pd(211) suggests the local character of the impact of the adsorbate on the
geometric and electronic structures of Pd surfaces.Comment: 14 pages 9 figs, Accepted J. Phys: Conden
The BaBar Event Building and Level-3 Trigger Farm Upgrade
The BaBar experiment is the particle detector at the PEP-II B-factory
facility at the Stanford Linear Accelerator Center. During the summer shutdown
2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60
Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III
systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on
the source side and a major feature extraction software speedup, this pushes
the performance of the BaBar event builder and L3 filter to 5.5kHz at current
background levels, almost three times the original design rate of 2kHz. For our
specific application the new farm provides 8.5 times the CPU power of the old
system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOGT00
Cancellation of probe effects in measurements of spin polarized momentum density by electron positron annihilation
Measurements of the two dimensional angular correlation of the
electron-positron annihilation radiation have been done in the past to detect
the momentum spin density and the Fermi surface. We point out that the momentum
spin density and the Fermi Surface of ferromagnetic metals can be revealed
within great detail owing to the large cancellation of the electron-positron
matrix elements which in paramagnetic multiatomic systems plague the
interpretation of the experiments. We prove our conjecture by calculating the
momentum spin density and the Fermi surface of the half metal CrO2, who has
received large attention due to its possible applications as spintronics
material
Ferromagnetism in Fe-substituted spinel semiconductor ZnGaO
Motivated by the recent experimental observation of long range ferromagnetic
order at a relatively high temperature of 200K in the Fe-doped ZnGaO
semiconducting spinel, we propose a possible mechanism for the observed
ferromagnetism in this system. We show, supported by band structure
calculations, how a model similar to the double exchange model can be written
down for this system and calculate the ground state phase diagram for the two
cases where Fe is doped either at the tetrahedral position or at the octahedral
position. We find that in both cases such a model can account for a stable
ferromagnetic phase in a wide range of parameter space. We also argue that in
the limit of high Fe concentration at the tetrahedral positions a
description in terms of a two band model is essential. The two orbitals
and the hopping between them play a crucial role in stabilizing the
ferromagnetic phase in this limit. The case when Fe is doped simultaneously at
both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
Substituting the main group element in cobalt - iron based Heusler alloys: CoFeAlSi
This work reports about electronic structure calculations for the Heusler
compound CoFeAlSi. Particular emphasis was put on the role of
the main group element in this compound. The substitution of Al by Si leads to
an increase of the number of valence electrons with increasing Si content and
may be seen as electron-doping. Self-consistent electronic structure
calculations were performed to investigate the consequences of the electron
doping for the magnetic properties. The series CoFeAlSi is
found to exhibit half-metallic ferromagnetism and the magnetic moment follows
the Slater-Pauling rule. It is shown that the electron-doping stabilises the
gap in the minority states for .Comment: J. Phys. D (accepted
High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si
This work reports on high resolution photoelectron spectroscopy for the
valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV
energy. The measurements show a good agreement to calculations of the
electronic structure using the LDA+U scheme. It is shown that the high energy
spectra reveal the bulk electronic structure better compared to low energy XPS
spectra. The high resolution measurements of the valence band close to the
Fermi energy indicate the existence of the gap in the minority states for all
three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy
- …