385 research outputs found

    Robust metabolic transcriptional components in 34,494 patient-derived cancer-related samples and cell lines

    Get PDF
    BACKGROUND: Patient-derived bulk expression profiles of cancers can provide insight into the transcriptional changes that underlie reprogrammed metabolism in cancer. These profiles represent the average expression pattern of all heterogeneous tumor and non-tumor cells present in biopsies of tumor lesions. Hence, subtle transcriptional footprints of metabolic processes can be concealed by other biological processes and experimental artifacts. However, consensus independent component analyses (c-ICA) can capture statistically independent transcriptional footprints of both subtle and more pronounced metabolic processes. METHODS: We performed c-ICA with 34,494 bulk expression profiles of patient-derived tumor biopsies, non-cancer tissues, and cell lines. Gene set enrichment analysis with 608 gene sets that describe metabolic processes was performed to identify the transcriptional components enriched for metabolic processes (mTCs). The activity of these mTCs was determined in all samples to create a metabolic transcriptional landscape. RESULTS: A set of 555 mTCs was identified of which many were robust across different datasets, platforms, and patient-derived tissues and cell lines. We demonstrate how the metabolic transcriptional landscape defined by the activity of these mTCs in samples can be used to explore the associations between the metabolic transcriptome and drug sensitivities, patient outcomes, and the composition of the immune tumor microenvironment. CONCLUSIONS: To facilitate the use of our transcriptional metabolic landscape, we have provided access to all data via a web portal (www.themetaboliclandscapeofcancer.com). We believe this resource will contribute to the formulation of new hypotheses on how to metabolically engage the tumor or its (immune) microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40170-021-00272-7

    Usefulness of preclinical models for assessing the efficacy of late-life interventions for sarcopenia

    Get PDF
    Caloric restriction and physical exercise have proven beneficial against age-associated changes in body composition and declining physical performance; however, little is known regarding what benefit these interventions might have when initiated late in life. The study of mimetics of diet and exercise and the combination thereof may provide additional treatments for a vulnerable elderly population; however, how and when to initiate such interventions requires consideration in developing the most safe and efficacious treatment strategies. In this review, we focus on preclinical late-life intervention studies, which assess the relationship between physical function, sarcopenia, and body composition. We provide a conceptual framework for the ever-changing definition of sarcopenia and a rationale for the use of an appropriate rodent model of this condition. We finish by providing our perspective regarding the implications of this body of work and future areas of research that may also contribute to the ultimate goal of extending healthspan. © 2011 The Author

    Improving gene function predictions using independent transcriptional components

    Get PDF
    The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal. Our understanding of the function of many transcripts is still incomplete, limiting the interpretability of transcriptomic data. Here the authors use consensus-independent component analysis, together with a guilt-by-association approach, to improve the prediction of gene function

    Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors

    Get PDF
    Background: Sepsis survivors often develop chronic critical illness (CCI) and demonstrate the persistent inflammation, immunosuppression, and catabolism syndrome predisposing them to long-term functional limitations and higher mortality. There is a need to identify biomarkers that can predict long-term worsening of physical function to be able to act early and prevent mobility loss. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a well-accepted biomarker of cardiac overload, but it has also been shown to be associated with long-term physical function decline. We explored whether NT-proBNP blood levels in the acute phase of sepsis are associated with physical function and muscle strength impairment at 6 and 12 months after sepsis onset. Methods: This is a retrospective analysis conducted in 196 sepsis patients (aged 18-86 years old) as part of the University of Florida (UF) Sepsis and Critical Illness Research Center (SCIRC) who consented to participate in the 12-month follow-up study. NT-proBNP was measured at 24 h after sepsis onset. Patients were followed to determine physical function by short physical performance battery (SPPB) test score (scale 0 to12-higher score corresponds with better physical function) and upper limb muscle strength by hand grip strength test (kilograms) at 6 and 12 months. We used a multivariate linear regression model to test an association between NT-proBNP levels, SPPB, and hand grip strength scores. Missing follow-up data or absence due to death was accounted for by using inverse probability weighting based on concurrent health performance status scores. Statistical significance was set at p ≤ 0.05. Results: After adjusting for covariates (age, gender, race, Charlson comorbidity index, APACHE II score, and presence of CCI condition), higher levels of NT-proBNP at 24 h after sepsis onset were associated with lower SPPB scores at 12 months (p < 0.05) and lower hand grip strength at 6-month (p < 0.001) and 12-month follow-up (p < 0.05). Conclusions: NT-proBNP levels during the acute phase of sepsis may be a useful indicator of higher risk of long-term impairments in physical function and muscle strength in sepsis survivors
    corecore