38 research outputs found

    Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Get PDF
    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range &#x2206;F = 0.5 – 40 Hz) and meteorological recordings, together with seismo-acoustic (&#x2206;F = 30 – 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( &#x2206;F = 0.003 – 30 Hz), three-component electric potential variations ( &#x2206;F <u><</u> 1.0 Hz), and VLF transmitter’s signal perturbations ( &#x2206;F ~ 10 – 40 kHz)

    Study of electromagnetic emissions associated with seismic activity in Kamchatka region

    No full text
    International audienceA review of data processing of electromagnetic emission observation collected at the Complex Geophysical Observatory Karimshino (Kamchatka peninsula) during the first 5 months (July?November, 2000) of its operation is given. The main goal of this study addresses the detection of the phenomena associated with Kamchatka seismic activity. The following observations have been conducted at CGO: variations of ULF/ELF magnetic field, geoelectric potentials (telluric currents), and VLF signals from navigation radio transmitters. The methods of data processing of these observations are discussed. The examples of the first experimental results are presented

    The impact of an extreme climatic disturbance and different fertilization treatments on plant development, phenology, and yield of two cultivar groups of Solanum betaceum Cav

    Full text link
    [EN] Changing climatic conditions impose a challenge both to biodiversity and food security. The effects of climate change affect different aspects of the plant or crop, such as morphological and phenological aspects, as well as yield. The effects of greenhouse conditions might be comparable in some cases to a permanent extreme disturbance in climate and weather, thus, contributing to our knowledge on climate change impacts on plant species. We have investigated the differences for 23 traits in two cultivar groups of an Andean traditional crop, Solanum betaceum, under two different environmental conditions that correspond to the traditional practices in the open field and three cultural managements under greenhouse conditions (no fertilization or control, organic, and mineral). We found that traditional practices in the open field are the less productive. Moreover, in warmer and drier conditions the treatment with organic fertilization was the most productive. Greenhouse conditions, however, delay production. We further identified traits that differentiate both cultivar groups and traits that are linked to either the new climate conditions or the fertilization treatments. Fruit characteristics were quite homogeneous between the two cultivar groups. Overall, our results provide insight on the consequences that climate change effects might exert on crops such as tree tomato, reveal that greenhouses can be a robust alternative for tree tomato production, and highlight the need to understand how different managements are linked to different solutions to fulfil the farmers' demands.M.X.R.-G. was funded by Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT: www.educacionsuperior.gob.ec/) with a Prometeo Fellowship. This research was co-financed by Universidad Politecnica de Madrid, http://www.upm.es/ (Ayudas para proyectos semilla de investigacion PID para Latinoamerica, proyecto AL14-PID-09: http://www.upm.es/sfs/Rectorado/Vicerrectarode%20de%20Relaciones%,20Internacionales/America%20Latina/AyudaLA_Adjud13.pdf) and Universidad Tecnica Tecnica Paticular de Loja, https://www.utpl.edu.ec/ (proyecto PROY_FIN_CCAA_ 0016). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Tandazo-Yunga, J.; Ruíz-González, MJ.; Rojas, J.; Capa-Mora, E.; Prohens Tomás, J.; Alejandro, J.; Acosta-Quezada, P. (2017). The impact of an extreme climatic disturbance and different fertilization treatments on plant development, phenology, and yield of two cultivar groups of Solanum betaceum Cav. PLoS ONE. 12(12). https://doi.org/10.1371/journal.pone.0190316Se0190316121

    On the Electromagnetic Field of an Earthquake Focus

    No full text
    Several mechanoelectromagnetic effects are analysed as probable generating mechanisms of electromagnetic impulses produced by an earthquake in its focus. Based on a simple mechanical concept of earthquakes and well-known theories of electrokinetic, piezomagnetic and induction effects, a dipole model of an earthquake-driven electromagnetic source is developed. Corresponding electric and/or magnetic dipole moment values are calculated as functions of earthquake focus parameters and generating mechanisms and are used to estimate the field intensities observable on the surface at different distances from an epicenter of an earthquake of a given magnitude (M). Calculated field values are compared with observational data

    On the Electromagnetic Field of an Earthquake Focus

    No full text
    Several mechanoelectromagnetic effects are analysed as probable generating mechanisms of electromagnetic impulses produced by an earthquake in its focus. Based on a simple mechanical concept of earthquakes and well-known theories of electrokinetic, piezomagnetic and induction effects, a dipole model of an earthquake-driven electromagnetic source is developed. Corresponding electric and/or magnetic dipole moment values are calculated as functions of earthquake focus parameters and generating mechanisms and are used to estimate the field intensities observable on the surface at different distances from an epicenter of an earthquake of a given magnitude (M). Calculated field values are compared with observational data
    corecore