852 research outputs found
Ab initio study of magnetism at the TiO2/LaAlO3 interface
In this paper we study the possible relation between the electronic and
magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism
found in undoped TiO2 films grown on LaAlO. We concentrate on the role
played by structural relaxation and interfacial oxygen vacancies.
LaAlO3 has a layered structure along the (001) direction with alternating LaO
and AlO2 planes, with nominal charges of +1 and -1, respectively. As a
consequence of that, an oxygen deficient TiO2 film with anatase structure will
grow preferently on the AlO2 surface layer. We have therefore performed
ab-initio calculations for superlattices with TiO2/AlO2 interfaces with
interfacial oxygen vacancies. Our main results are that vacancies lead to a
change in the valence state of neighbour Ti atoms but not necessarily to a
magnetic solution and that the appearance of magnetism depends also on
structural details, such as second neighbor positions. These results are
obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc
Appearance of room temperature ferromagnetism in Cu-doped TiO films
In recent years there has been an intense search for room temperature
ferromagnetism in doped dilute semiconductors, which have many potentially
applications in spintronics and optoelectronics. We report here the unexpected
observation of significant room temperature ferromagnetism in a semiconductor
doped with nonmagnetic impurities, Cu-doped TiO thin films grown by Pulsed
Laser Deposition. The magnetic moment, calculated from the magnetization
curves, resulted surprisingly large, about 1.5 per Cu atom. A large
magnetic moment was also obtained from ab initio calculations using the
supercell method for TiO with Cu impurities, but only if an oxygen vacancy
in the nearest-neighbour shell of Cu was present. This result suggests that the
role of oxygen vacancies is crucial for the appearance of ferromagnetism. The
calculations also predict that Cu doping favours the formation of oxygen
vacancies.Comment: 4 pages, 3 figures, published in Phys. Rev. B (Rapid Comm.
Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record : A review
We appreciate very helpful reviews by Dr. Martin Stokes and three anonymous reviewers and editor Dr. Richard Marston. We also appreciate the encouragement for writing this paper from Dr. Timothy Horscroft. We acknowledge support of the sponsors of the Fluvial Systems Research Group consortium, BP, BG, Chevron, ConocoPhillips and Total.Peer reviewedPostprin
Theory of the Fano Resonance in the STM Tunneling Density of States due to a Single Kondo Impurity
The conduction electron density of states nearby single magnetic impurities,
as measured recently by scanning tunneling microscopy (STM), is calculated,
taking into account tunneling into conduction electron states only. The Kondo
effect induces a narrow Fano resonance in the conduction electron density of
states, while scattering off the d-level generates a weakly energy dependent
Friedel oscillation. The line shape varies with the distance between STM tip
and impurity, in qualitative agreement with experiments, but is very sensitive
to details of the band structure. For a Co impurity the experimentally observed
width and shift of the Kondo resonance are in accordance with those obtained
from a combination of band structure and strongly correlated calculations.Comment: 4 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to
PR
Molecular dynamics study of the fragmentation of silicon doped fullerenes
Tight binding molecular dynamics simulations, with a non orthogonal basis
set, are performed to study the fragmentation of carbon fullerenes doped with
up to six silicon atoms. Both substitutional and adsorbed cases are considered.
The fragmentation process is simulated starting from the equilibrium
configuration in each case and imposing a high initial temperature to the
atoms. Kinetic energy quickly converts into potential energy, so that the
system oscillates for some picoseconds and eventually breaks up. The most
probable first event for substituted fullerenes is the ejection of a C2
molecule, another very frequent event being that one Si atom goes to an
adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they
have four or more atoms, while the smaller ones tend to dissociate and
sometimes interchange positions with the C atoms. These results are compared
with experimental information from mass abundance spectroscopy and the products
of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in
Physical Review
Mutations in NSUN2 cause autosomal-recessive intellectual disability
With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227( *)] and c.1114C>T [p.Gln372( *)], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs( *)192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development
Effect of Substitutional Impurities on the Electronic States and Conductivity of Crystals with Half-filled Band
Low temperature quantum corrections to the density of states (DOS) and the
conductivity are examined for a two-dimensional(2D) square crystal with
substitutional impurities. By summing the leading logarithmic corrections to
the DOS its energy dependence near half-filling is obtained. It is shown that
substitutional impurities do not suppress the van Hove singularity at the
middle of the band, however they change its energy dependence strongly. Weak
disorder due to substitutional impurities in the three-dimensional simple cubic
lattice results in a shallow dip in the center of the band. The calculation of
quantum corrections to the conductivity of a 2D lattice shows that the
well-known logarithmic localization correction exists for all band fillings.
Furthermore the magnitude of the correction increases as half-filling is
approached. The evaluation of the obtained analytical results shows evidence
for delocalized states in the center of the band of a 2D lattice with
substitutional impurities
Slow dynamics and aging in spin-glasses
Contribution presented by Eric Vincent in the Conference `Complex Behaviour
of Glassy Systems', Sitges, Barcelona, Spain, June, 1996. It contains a review
of the experimental results on Slow dynamics and aging in spin-glasses. It also
presents their comparison with recent theoretical developments in the
description of the out of equilibrium dynamics of disordered systems; namely,
the trap model and the mean-field theory.Comment: 35 pages, 12 figures, macro lmamult.sty (included
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells
- …