56,786 research outputs found
Genus and spot density in the COBE DMR first year anisotropy maps
A statistical analysis of texture on the {\it COBE}-DMR first year sky maps
based on the genus and spot number is presented. A generalized
statistic is defined in terms of ``observable'' quantities: the genus and spot
density that would be measured by different cosmic observers. This strategy
together with the use of Monte Carlo simulations of the temperature
fluctuations, including all the relevant experimental parameters, represent the
main difference with previous analyses. Based on the genus analysis we find a
strong anticorrelation between the quadrupole amplitude and the
spectral index of the density fluctuation power spectrum at recombination
of the form K for fixed
, consistent with previous works. The result obtained based on the spot
density is consistent with this relation. In addition to the
previous results we have determined, using Monte Carlo simulations, the minimum
uncertainty due to cosmic variance for the determination of the spectral index
with the genus analysis. This uncertainty is .Comment: 5 pages, uuencode file containing text and 1 figure. MNRAS in press
Beyond simulation: designing for uncertainty and robust solutions
Simulation is an increasingly essential tool in the design of our environment, but any model is only as good as the initial assumptions on which it is built. This paper aims to outline some of the limits and potential dangers of reliance on simulation, and suggests how to make our models, and our buildings, more robust with respect to the uncertainty we face in design. It argues that the single analyses provided by most simulations display too precise and too narrow a result to be maximally useful in design, and instead a broader description is required, as might be provided by many differing simulations. Increased computing power now allows this in many areas. Suggestions are made for the further development of simulation tools for design, in that these increased resources should be dedicated not simply to the accuracy of single solutions, but to a bigger picture that takes account of a design’s robustness to change, multiple phenomena that cannot be predicted, and the wider range of possible solutions. Methods for doing so, including statistical methods, adaptive modelling, machine learning and pattern recognition algorithms for identifying persistent structures in models, will be identified. We propose a number of avenues for future research and how these fit into design process, particularly in the case of the design of very large buildings
CP violation with a dynamical Higgs
We determine the complete set of independent gauge and gauge-Higgs CP-odd
effective operators for the generic case of a dynamical Higgs, up to four
derivatives in the chiral expansion. The relation with the linear basis of
dimension six CP-odd operators is clarified. Phenomenological applications
include bounds inferred from electric dipole moment limits, and from present
and future collider data on triple gauge coupling measurements and Higgs
signals.Comment: 41 pages, 3 figures; V2: citations added, typos corrected, version
published on JHE
The effect of a planet on the dust distribution in a 3D protoplanetary disk
Aims: We investigate the behaviour of dust in protoplanetary disks under the
action of gas drag in the presence of a planet. Our goal is twofold: to
determine the spatial distribution of dust depending on grain size and planet
mass, and therefore to provide a framework for interpretation of coming
observations and future studies of planetesimal growth. Method: We numerically
model the evolution of dust in a protoplanetary disk using a two-fluid (gas +
dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating
and locally isothermal. The code follows the three dimensional distribution of
dust in a protoplanetary disk as it interacts with the gas via aerodynamic
drag. In this work, we present the evolution of a minimum mass solar nebula
(MMSN) disk comprising 1% dust by mass in the presence of an embedded planet.
We run a series of simulations which vary the grain size and planetary mass to
see how they affect the resulting disk structure. Results: We find that gap
formation is much more rapid and striking in the dust layer than in the gaseous
disk and that a system with a given stellar, disk and planetary mass will have
a completely different appearance depending on the grain size. For low mass
planets in our MMSN disk, a gap can open in the dust disk while not in the gas
disk. We also note that dust accumulates at the external edge of the planetary
gap and speculate that the presence of a planet in the disk may enhance the
formation of a second planet by facilitating the growth of planetesimals in
this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysic
Excitons in coupled InAs/InP self-assembled quantum wires
Optical transitions in coupled InAs/InP self-assembled quantum wires are
studied within the single-band effective mass approximation including effects
due to strain. Both vertically and horizontally coupled quantum wires are
investigated and the ground state, excited states and the photoluminescence
peak energies are calculated. Where possible we compare with available
photo-luminescence data from which it was possible to determine the height of
the quantum wires. An anti-crossing of the energy of excited states is found
for vertically coupled wires signaling a change of symmetry of the exciton
wavefunction. This crossing is the signature of two different coupling regimes.Comment: 8 pages, 8 figures. To appear in Physical Review
Anveshak - A Groundtruth Generation Tool for Foreground Regions of Document Images
We propose a graphical user interface based groundtruth generation tool in
this paper. Here, annotation of an input document image is done based on the
foreground pixels. Foreground pixels are grouped together with user interaction
to form labeling units. These units are then labeled by the user with the user
defined labels. The output produced by the tool is an image with an XML file
containing its metadata information. This annotated data can be further used in
different applications of document image analysis.Comment: Accepted in DAR 201
- …