34,945 research outputs found
The K Band Luminosity Functions of Galaxies in High Redshift Clusters
K band luminosity functions (LFs) of three, massive, high redshift clusters
of galaxies are presented. The evolution of K*, the characteristic magnitude of
the LF, is consistent with purely passive evolution, and a redshift of forma
tion z = 1.5-2.Comment: 3 pages, to appear in Proceedings of IAU Colloquium 195 - Outskirts
of Galaxy Clusters: intense life in the suburb
Neutrino Oscillations Induced by Gravitational Recoil Effects
Quantum gravitational fluctuations of the space-time background, described by
virtual D branes, may induce neutrino oscillations if a tiny violation of the
Lorentz invariance (or a violation of the equivalence principle) is imposed. In
this framework, the oscillation length of massless neutrinos turns out to be
proportional to M/E^2, where E is the neutrino energy and M is the mass scale
characterizing the topological fluctuations in the vacuum. Such a functional
dependence on the energy is the same obtained in the framework of loop quantum
gravity.Comment: 5 pages, LaTex fil
Test of the Additivity Principle for Current Fluctuations in a Model of Heat Conduction
The additivity principle allows to compute the current distribution in many
one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this
conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a
wide current interval. The current distribution shows both Gaussian and
non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We
verify the existence of a well-defined temperature profile associated to a
given current fluctuation. This profile is independent of the sign of the
current, and this symmetry extends to higher-order profiles and spatial
correlations. We also show that finite-time joint fluctuations of the current
and the profile are described by the additivity functional. These results
suggest the additivity hypothesis as a general and powerful tool to compute
current distributions in many nonequilibrium systems.Comment: 4 pages, 4 figure
Jet Investigations Using the Radial Moment
We define the radial moment, , for jets produced in hadron-hadron
collisions. It can be used as a tool for studying, as a function of the jet
transverse energy and pseudorapidity, radiation within the jet and the quality
of a perturbative description of the jet shape. We also discuss how
non-perturbative corrections to the jet transverse energy affect .Comment: 14 pages, LaTeX, 6 figure
A workbook of exercises for following directions to be used with high achieving children in grades one, three and five
Thesis (Ed.M.)--Boston Universit
Astrophysical Probes of the Constancy of the Velocity of Light
We discuss possible tests of the constancy of the velocity of light using
distant astrophysical sources such as gamma-ray bursters (GRBs), Active
Galactic Nuclei (AGNs) and pulsars. This speculative quest may be motivated by
some models of quantum fluctuations in the space-time background, and we
discuss explicitly how an energy-dependent variation in photon velocity \delta
c/ c \sim - E / M arises in one particular quantum-gravitational model. We then
discuss how data on GRBs may be used to set limits on variations in the
velocity of light, which we illustrate using BATSE and OSSE observations of the
GRBs that have recently been identified optically and for which precise
redshifts are available. We show how a regression analysis can be performed to
look for an energy-dependent effect that should correlate with redshift. The
present data yield a limit M \gsim 10^{15} GeV for the quantum gravity scale.
We discuss the prospects for improving this analysis using future data, and how
one might hope to distinguish any positive signal from astrophysical effects
associated with the sources.Comment: 37 pages LaTeX, 9 eps figures included, uses aasms4.st
Supersymmetric Dark Matter and the Reheating Temperature of the Universe
Since the thermal history of the Universe is unknown before the epoch of
primordial nucleosynthesis, the largest temperature of the radiation dominated
phase (the reheating temperature) might have been as low as 1 MeV. We perform a
quantitative study of supersymmetric dark matter relic abundance in
cosmological scenarios with low reheating temperature. We show that, for values
of the reheating temperature smaller than about 30 GeV, the domains of the
supergravity parameter space which are compatible with the hypothesis that dark
matter is composed by neutralinos are largely enhanced. We also find a lower
bound on the reheating temperature: if the latter is smaller than about 1 GeV
neutralinos cannot be efficiently produced in the early Universe and then they
are not able to explain the present amount of dark matter.Comment: 21 pages, 5 figures, typeset with ReVTeX4. The paper may also be
found at http://www.to.infn.it/~fornengo/papers/reheating.ps.g
A Layman's guide to SUSY GUTs
The determination of the most straightforward evidence for the existence of
the Superworld requires a guide for non-experts (especially experimental
physicists) for them to make their own judgement on the value of such
predictions. For this purpose we review the most basic results of Super-Grand
unification in a simple and clear way. We focus the attention on two specific
models and their predictions. These two models represent an example of a direct
comparison between a traditional unified-theory and a string-inspired approach
to the solution of the many open problems of the Standard Model. We emphasize
that viable models must satisfy {\em all} available experimental constraints
and be as simple as theoretically possible. The two well defined supergravity
models, and , can be described in terms of only a few
parameters (five and three respectively) instead of the more than twenty needed
in the MSSM model, \ie, the Minimal Supersymmetric extension of the Standard
Model. A case of special interest is the strict no-scale
supergravity where all predictions depend on only one parameter (plus the
top-quark mass). A general consequence of these analyses is that supersymmetric
particles can be at the verge of discovery, lurking around the corner at
present and near future facilities. This review should help anyone distinguish
between well motivated predictions and predictions based on arbitrary choices
of parameters in undefined models.Comment: 25 pages, Latex, 11 figures (not included), CERN-TH.7077/93,
CTP-TAMU-65/93. A complete ps file (1.31MB) with embedded figures is
available by request from [email protected]
- …