192 research outputs found

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11

    Transparent Anomalous Dispersion and Superluminal Light Pulse Propagation at a Negative Group Velocity

    Full text link
    Anomalous dispersion cannot occur in a transparent passive medium where electromagnetic radiation is being absorbed at all frequencies, as pointed out by Landau and Lifshitz. Here we show, both theoretically and experimentally, that transparent linear anomalous dispersion can occur when a gain doublet is present. Therefore, a superluminal light pulse propagation can be observed even at a negative group velocity through a transparent medium with almost no pulse distortion. Consequently, a {\it negative transit time} is experimentally observed resulting in the peak of the incident light pulse to exit the medium even before entering it. This counterintuitive effect is a direct result of the {\it rephasing} process owing to the wave nature of light and is not at odds with either causality or Einstein's theory of special relativity.Comment: 12 journal pages, 9 figure

    To the Continuum and Beyond: Structure of U Nuclei

    Get PDF
    An experiment was performed at the 88-inch cyclotron at LBNL to investigate the structure of uranium isotopes and concurrently test the so-called surrogate ratio method. A 28 MeV proton beam was used to bombard 236U and 238U targets and the outgoing light ions were detected using the STARS silicon telescope allowing isotopic assignments and the excitation energy of the compound nucleus to be measured. A fission detector was placed at backward angles to give particle-fission coincidences, while the six clover germanium detectors of the LIBERACE array were used for particle-γ coincidences. The (p,d) reaction channels on 236U and 238U targets were used as a surrogate to measure the σ(234U(n,f))/σ(236U(n,f)) cross section ratio. The results give reasonable agreement with literature values over an equivalent neutron energy range between 0 MeV and 6 MeV. Structure results in 235U include a new (3/2−) level at 1035 keV, that is tentatively assigned as the 3/2−[501] Nilsson state. The analogue 3/2−[501] state in 237U may be associated with a previously observed level at 1201 keV, whose spin/parity is restricted to Jπ = 3/2− on the basis of newly observed decays to the ground band

    Observation of contemporaneous optical radiation from a gamma-ray burst

    Full text link
    The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.Comment: 10 pages, 2 figures. Accepted for publication in Nature. For additional information see http://www.umich.edu/~rotse

    Utilizing (\u3cem\u3ep,d\u3c/em\u3e) and (\u3cem\u3ep,t\u3c/em\u3e) Reactions to Obtain (\u3cem\u3en,f\u3c/em\u3e) Cross Sections in Uranium Nuclei Via the Surrogate-Ratio Method

    Get PDF
    The surrogate ratio method has been tested for (p,d) and (p,t) reactions on uranium nuclei. 236U and 238U targets were bombarded with 28-MeV protons and the light ion recoils and fission fragments were detected using the Silicon Telescope Array for Reaction Studies detector array at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The (p,df) reaction channels on 236U and 238U targets were used as a surrogate to determine the σ[236U(n,f)]/σ[234U(n,f)] cross-section ratio. The (p,tf) reaction channels were also measured with the same targets as a surrogate for the σ[235U(n,f)]/σ[(233U(n,f)] ratio. For the (p,df) and (p,tf) surrogate measurements, there is good agreement with accepted (n,f) values over equivalent neutron energy ranges of En=0–7 MeV and En=0–5.5 MeV, respectively. An internal surrogate ratio method comparing the (p,d) and (p,t) reaction channels on a single target is also discussed. The σ[234U(n,f)]/σ[233U(n,f)] and σ[236U(n,f)]/σ[235U(n,f)] cross-section ratios are extracted using this method for the 236U and 238U targets, respectively. The resulting fission cross-section ratios show relatively good agreement with accepted values up to En∼5 MeV

    Remnants of Spherical Shell Structures in Deformed Nuclei: The Impact of an \u3cem\u3eN\u3c/em\u3e = 64 Neutron Subshell Closure on the Structure of \u3cem\u3eN\u3c/em\u3e ≈ 90 Gadolinium Nuclei

    Get PDF
    Odd-mass gadolinium isotopes around N = 90 were populated by the (p,d) reaction, utilizing 25-MeV protons, resulting in population of low-spin quasineutron states at energies near and below the Fermi surface. Systematics of the single quasineutron levels populated are presented. A large excitation energy gap is observed between levels originating from the 2d3/2, 1h11/2, and 3s1/2 spherical parents (above the N = 64 gap), and the 2d5/2 (below the gap), indicating that the spherical shell model level spacing is maintained at least to moderate deformations

    Spectroscopy of \u3csup\u3e88\u3c/sup\u3eY by the (\u3cem\u3ep,dγ\u3c/em\u3e) Reaction

    Get PDF
    Low-spin, high-excitation energy states in 88Y have been studied using the 89Y(p,dγ) reaction. For this experiment a 25 MeV proton beam was incident upon a monoisotopic 89Y target. A silicon telescope array was used to detect deuterons, and coincident γ rays were detected using a germanium clover array. Most of the known low-excitation-energy low-spin states populated strongly via the (p,d) reaction mechanism are confirmed. Two states are seen for the first time and seven new transitions, including one which bypasses the two low-lying isomeric states, are observed
    • …
    corecore