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Spectroscopy of 88Y by the ( p, dγ ) reaction
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Low-spin, high-excitation energy states in 88Y have been studied using the 89Y(p, dγ ) reaction. For this
experiment a 25 MeV proton beam was incident upon a monoisotopic 89Y target. A silicon telescope array was
used to detect deuterons, and coincident γ rays were detected using a germanium clover array. Most of the known
low-excitation-energy low-spin states populated strongly via the (p, d) reaction mechanism are confirmed. Two
states are seen for the first time and seven new transitions, including one which bypasses the two low-lying
isomeric states, are observed.

DOI: 10.1103/PhysRevC.86.067301 PACS number(s): 29.30.Ep, 25.40.Hs, 27.50.+e

Recently the A ∼ 80 mass region has attracted much
attention due to the wealth of significant nuclear structure
effects that have been unveiled including signature inver-
sion, shape coexistence, and chiral doublet bands [1–4].
While these effects require knowledge of the high-spin and
high-excitation-energy structures, [5,6], it is also of great
importance to understand the lower spin structure of these
nuclei. 88Y with 39 protons and 49 neutrons is a doubly
odd nucleus just one proton and one neutron away from the
“closed-shell” nuclei 88Sr and 90Zr. Due to its monoisotopic
nature, yttrium isotopes, and isotopes of neighboring nuclei
including zirconium, have traditionally played a central role
in applications including radiochemistry diagnostics [7,8].
For this application, measurements of neutron-induced cross
sections on different isotopes in the region, particularly long-
lived ones such as 88Y, are desirable and, due to the low spins
imparted by neutron-induced reactions, detailed knowledge of
the low-spin, high-excitation energy level structure is of great
interest. In particular, γ -ray decays which bypass long-lived
isomeric states, typical in the region, are of interest for
cross-section calculations. One method of measuring such
cross sections is the surrogate reaction technique, [9]. Several
studies throughout the 1970s and 1980s utilized light-ion
transfer reactions to probe excited states in 88Y [10–15]. In
this Brief Report we discuss new results in 88Y using the
(p, dγ ) reaction.

The experiment was carried out at the 88-Inch Cy-
clotron at Lawrence Berkeley National Laboratory using the
STARS-LIBERACE arrays [16]. A proton beam (Ebeam =
25 MeV, typical beam current ∼2.5 enA) was incident upon a

*Quantum Beam Science Directorate, Japan Atomic Energy
Agency, Tokai, Ibaraki 319-1195, Japan.

†IKP, TU Darmstadt, 64289 Darmstadt, Germany.
‡IKP, TU Darmstadt, 64289 Darmstadt, Germany.

monoisotopic 89Y target for a period of 90 min. In this work, fo-
cus is placed upon spectroscopy of discrete states in 88Y, pop-
ulated via the 89Y(p, dγ ) reaction, utilizing the spectroscopic
techniques recently demonstrated by Allmond et al. [17]. The
combination of particle and γ -ray detection provides several
advantages over traditional γ -ray spectroscopy experiments
such as providing reaction (and thus final product) selectivity,
light-ion energy measurement (which can be used to deduce
the resultant nuclear excitation energy), and light-ion angular
distributions (providing information about the spin transfer).
Here we demonstrate how such level building techniques
can be used to great effect when conducting spectroscopy of
traditionally difficult odd-odd nuclei.

These data were taken as part of a larger study of gadolinium
isotopes by the (p, d) and (p, t) reactions and the setup is
the same as that used in Ref. [18]. Outgoing light ions were
detected with the silicon telescope array for reaction studies
(STARS) [16] which consisted of two segmented silicon
detectors arranged in a �E-E telescope configuration. Each
silicon detector is segmented into 48 rings and 16 sectors.
However, adjacent rings and sectors were bussed to give
24 rings and 8 sectors per detector. The �E detector was
150 μm thick and the E detector was 1000 μm thick. An
aluminum absorber (150 μg/cm2) was placed in front of the
�E detector to absorb delta electrons. This absorber and the
dead layers on the surface of the silicon detectors (0.1 μm
aluminum on the front surface and 0.3 μm gold surface on
the back) are taken into account in event-by-event energy loss
calculations. The detector configuration was chosen so as to
be thick enough to stop and measure the energy of deuterons
and tritons leaving the target. In addition, protons with energy
below ∼19 MeV were also stopped by the �E-E telescope.
Above ∼19 MeV the protons had too much energy to be
stopped by the silicon detectors and “punched through” the
array.

The position information from the two silicon detectors
is used to perform a ray trace back to the target. A measured
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particle is only considered if energy is deposited in both the �E

and E detectors and the particle is deemed to have originated
from the target position. The silicon detectors were energy
calibrated at the beginning and end of the run using a 226Ra
source.

γ rays in coincidence with the detected particles were
measured using the Livermore Berkeley array for collaborative
experiments (LIBERACE) [16]. For this experiment, LIBER-
ACE consisted of 5 HPGe clover detectors, each with its own
bismuth germanate (BGO) Compton suppression shield. Two
detectors were placed at 90◦, two at forward angles of 50◦, and
one at a backward angle of 50◦ with respect to the beam. The
germanium detectors were energy calibrated using standard
γ -ray sources before and after the run. An energy resolution of
∼2 keV was achieved at 200 keV and ∼4.5 keV was achieved
at ∼1.5 MeV. An efficiency calibration was carried out at the
end of the experiment using 152Eu, 133Ba, and 207Bi sources.
The efficiency of the array peaked at 2.6% at ∼200 keV and
drops to 1.25% at ∼1 MeV. Internal conversion coefficients
were calculated using the BRICC code [19]. A total of 7.4 × 105

deuteron events and 6.6 × 104 deuteron-γ coincidence events
were recorded.

The projection of deuterons measured in coincidence with
all γ rays is shown in Fig. 1 (dashed spectrum). The peak
just above zero excitation energy almost all corresponds to
the direct population of the first excited 5− state at 231 keV.
The expected large (p, d) population of the ground state does
not appear due to the prompt γ -ray coincidence requirement.
Similarly, peaks corresponding to the direct population of the
two low-lying isomers at 393 keV (t1/2 = 0.3 ms) and 674 keV
(t1/2 = 13.97 ms) are also not apparent in this spectrum. Most
of the observed states which are directly populated are in the
excitation-energy region between 1 and 2 MeV (see Fig. 1).

The spectrum of γ rays which decay from states with
excitation energies between 1 and 2.1 MeV is shown in
Fig. 2. The excitation energy “gate” utilized is not selective of
first-generation γ rays and thus coincident transitions which
occur farther down the decay chain, from states below 1 MeV
are also observed. For example, the 231 keV γ ray shown in
Fig. 2(a) is the transition from the 5− 231 keV level to the
ground state.
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FIG. 1. (Color online) Dashed spectrum: The projection of the
deuterons in coincidence with all detected γ rays. Solid spectrum:
The deuterons in coincidence with the 1963 keV γ ray.
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FIG. 2. γ rays in coincidence with population of the excitation
energy region: 1 < E∗ < 2.1 MeV, in 88Y. Contaminant coincidences
involving 88Zr γ rays are labeled with solid black dots. (a) 0 < Eγ <

500 keV. (b) 500 < Eγ < 1000 keV. (c) 1000 < Eγ < 1500 keV.
(d) 1500 < Eγ < 2000 keV.

Due to the very large (p, 2n) cross section [20], the most
intense decays in 88Zr are also observed in random coincidence
with deuterons. These lines are labeled in Fig. 2(c) by solid
black dots and are distinguishable from γ rays of interest
because they are in coincidence with all deuteron energies.
Figure 3 shows the γ rays in coincidence with a gate placed
upon the excitation energy region 0 < E∗ < 0.5 MeV. The
only transition one would expect to see in this gate is the very
prominent 231 keV line.

Most of the previously known γ -ray transitions from low-
lying states up to 1.8 MeV were observed [21]. In addition,
two new levels and seven new γ rays were seen. A summary
of the levels populated by the 89Y(p, d)88Y reaction is given
in Table I. New information in this table is shown in bold font.
Population yields are expressed relative to the most intensely
populated state, the 5− at 231 keV. The low-lying level scheme
of 88Y that we observe is presented in Fig. 4. Levels are labeled
by their spins, parities, and excitation energies.
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FIG. 3. γ rays in coincidence with population of the excitation
energy region: 0 < E∗ < 500 keV.
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TABLE I. Summary of the levels populated and decays observed in 88Y in the current work. Newly observed levels and transitions are
shown in bold. E∗ corresponds to the level energy, those not shown in bold are NNDC values [21]. J π corresponds to the spin and parity of the
level [21]. Yieldrel gives the yield for each state relative to the most intensely populated state at 231 keV. Eγ corresponds to the γ -ray energy as
measured in this work. Iγ is the intensity of each γ ray relative to other decays leaving that level. E∗

final NDS is the adopted data sheet energy
of the level to which the γ ray decays. J π

final gives the spin and parity of the final level [21].

E∗ (keV) J π Yieldrel Eγ (keV) Iγ E∗
final NDS (keV) J π

final

0.0 (0) 4− -
231.929 (6) (5)− 100(0) 231.84(6) 100 (0) 0.0 (0) 4−

392.86 (5) 1+ -
674.55 (7) (8)+ -
706.72 (7) (2−) 1.5(4) 314.05(15) 100 (0) 392.86 (5) 1+

766.4 (9) (0)+ 11(1) 373.22(15) 100 (0) 392.86 (5) 1+

843.18 (12) (5)+ Fed 127.8(2) 100(14) 715.16 (13) 6+

611.2(4) 42 (18) 231.929 (6) 5−

984.83 (13) (4)+ Fed 141.6(2) 55 (5) 843.18 (12) (5)+

983.6(3) 100(14) 0.0 (0) 4−

1129.13 (5) 3,4,5− 1.4(4) 896.0(6) 100 (0) 231.929 (6) (5)−

1221.26 (21) 0,1+ 22(2) 827.6(2) 100 (0) 392.86 (5) 1+

1275.3 (7) 1,2+ 25(2) 508.85(9) 100 (6) 766.4 (9) (2−)
882.1(3) 22 (3) 392.86 (5) 1+

1283.95 (10) 3,4,5 1.1(7) 299.2(3) 100(27) 984.83 (13) (4)+

1283(1) 43 (27) 0.0 (0) 4−

1559.3 (3) 4.5(13) 793.2(8) 67(26) 766.4(3) (0)+

1166.2(5) 100(20) 392.86(9) 1+

1570.1 (3) 22.1(12) 286.2(8) 26(4) 1283.95(15) (3,4,5)
295.1(3) 14(3) 1275.3(10) (1,2)+

349.57(8) 100(8) 1221.26(14) (0,1)+

863.0(4) 27(5) 706.72(13) 2−

1177.3(3) 40(7) 392.86(9) 1+

1702.6 (3) 3+,4+ 9.4(21) 717.85(20) 100(12) 984.83(13) (4)+

1309.0(4) 10(6) 392.86(9) 1+

1962.5 (4) 3.0(6) 1962.5(4) 100(0) 0.0(0) 4−

Of particular interest is a new γ ray of energy Eγ =
1962.5 keV. The deuteron spectrum measured in coincidence
with this γ ray is shown in Fig. 1 (solid spectrum), where
the peak (corresponding to direct population of the state)
corresponds to an excitation energy of 1948 ± 30 keV. The
combination of γ -ray energy and excitation energy (Eγ =
1962.5 keV and E∗ = 1948 ± 30 keV) allows us to conclude
that the only level to which this γ ray could possibly decay
is the ground state. Therefore a new level is established
at 1962.5 keV. This decay bypasses both of the low-lying
isomers through which most of the γ -ray cascade passes. Other
previously known states, whose decay bypasses the isomers
(984, 1088, 1234, and 1262 keV) are not directly populated.
The level at 984 keV is quite strongly fed by higher excitation
energy states which are directly populated in this experiment.
This level at 1963 keV is probably the same level observed
by Taketani et al. [14] at 1.95 MeV, although no details are
provided.

Several nearby nuclei, including 89Y, also have γ -ray transi-
tions with Eγ ∼ 1963 keV. To confirm that the 1962.5 keV line
observed here is indeed from 88Y, the (p, p′γ ) data are utilized.
The particle projection of 89Y(p, p′)89Y inelastic scattering is
shown by the dashed spectrum in Fig. 5. Excitation energy
increases from right to left. The gate (solid spectrum) in

Fig. 5(a) shows the protons in coincidence with the 1982 keV
transition in 89Y. As expected, this decay is only observed in
coincidence with levels below the neutron separation energy.
The gate (solid spectrum) in Fig. 5(b) shows the protons in
coincidence with 231 keV transition in 88Y. This decay is
only observed in coincidence with levels above the neutron
separation energy. The gate (solid spectrum) in Fig. 5(c) shows
that a γ ray of energy 1963 keV is detected in both 89Y and
88Y, i.e., both above and below the neutron separation energy.
The ∼2 MeV gap above the neutron separation energy is
completely consistent with this conclusion and the placement
of the 1963 keV level in 88Y.

Information concerning several other states has been
obtained. A series of γ rays is observed that decay from
an excitation energy of ∼1550 keV, as determined by the
coincident deuterons. The energies of these γ rays are 286,
295, 793, 863, and 1166 keV. Due to the low level density in
the low-energy structure of 88Y, there are only a few viable
options for the placement of these decays. Three of these γ

rays (286, 295, and 1166 keV) are assigned to the level at
1570 keV in addition to two previously measured decays from
this level (350 and 1177 keV, these two γ -ray energies have
been measured to a higher precision). This level is the fourth
most intensely populated state by the (p, d) reaction.

067301-3
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FIG. 4. (Color online) The low-lying level scheme of 88Y ob-
served in this work. New transitions and levels are shown in red if
viewed online.

The 793 and 1166 keV γ rays are assigned to a new level
at 1559 keV. Both of these decays eventually pass through
the 0.3 ms isomeric state at 393 keV. The two levels at 1559
and 1570 keV account for the strong population observed by
Taketani et al. [14] around 1.56 MeV.

A 1309 keV transition originating from a state at
∼1700 keV is assigned to the level at 1702.6 keV. This new
transition is weak in comparison to the one previously known
decay (718 keV) from this state.

In conclusion, the low-lying structure of 88Y has been
studied using particle-γ coincidence spectroscopy. Much
of the known low-spin-level structure has been confirmed.
Relative population yields of all states populated via the (p, d)
reaction have been measured. Two new levels have been
observed including a level at 1963 keV which bypasses both of
the lower-lying isomeric states. That such clean spectroscopy
was possible following just 90 min of beam on target suggests
that a more comprehensive study of nuclei in the region
utilizing similar techniques could be very useful. In particular,
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the use of angular distributions of outgoing light ions combined
with the selectivity of a γ -ray gate would be able to help with
spin and parity assignments for these historically difficult to
study states.

The authors thank the 88-Inch Cyclotron operations and
facilities staff for their help in performing this experiment.
This work was performed under the auspices of the National
Science Foundation and the US Department of Energy by
the University of Richmond under Grants No. DE-FG52-
06NA26206 and No. DE-FG02-05ER41379, Lawrence Liv-
ermore National Laboratory and NA22 office under Con-
tracts No. W-7405-Eng-48 and No. DE-AC52-07NA27344,
and Lawrence Berkeley National Laboratory under Contract
No. DE-AC02-05CH11231. The work was also supported in
part through the Topical Collaboration TORUS.

[1] C. Plettner et al., Phys. Rev. Lett. 85, 2454 (2000).
[2] J. Ljungvall et al., Phys. Rev. Lett. 100, 102502 (2008).
[3] R. Wadsworth et al., Phys. Lett. B 701, 306 (2011).
[4] S. Y. Wang et al., Phys. Lett. B 703, 40 (2011).
[5] M. R. Bunce et al., J. Phys.: Conf. Ser. 381, 012068

(2012).

[6] C. J. Xu et al., Phys. Rev. C 86, 027302 (2012).
[7] E. D. Arthur, Tech. Report LA-7789-MS. Los Alamos National

Laboratory, Los Alamos, NM, 1977 (unpublished).
[8] R. D. Hoffman, K. Kelley, F. S. Dietrich, R. Bauer, and

M. G. Mustafa. UCRL-TR-222275. Lawrence Livermore Na-
tional Laboratory, Livermore, CA, 2006 (unpublished).

067301-4

http://dx.doi.org/10.1103/PhysRevLett.85.2454
http://dx.doi.org/10.1103/PhysRevLett.100.102502
http://dx.doi.org/10.1016/j.physletb.2011.06.006
http://dx.doi.org/10.1016/j.physletb.2011.07.055
http://dx.doi.org/10.1088/1742-6596/381/1/012068
http://dx.doi.org/10.1088/1742-6596/381/1/012068
http://dx.doi.org/10.1103/PhysRevC.86.027302


BRIEF REPORTS PHYSICAL REVIEW C 86, 067301 (2012)

[9] J. E. Escher, J. T. Burke, F. S. Dietrich, N. D. Scielzo, I. J.
Thompson, and W. Younes, Rev. Mod. Phys. 84, 353 (2012).

[10] J. E. Kitching, P. A. Batay-Csorba, C. A. Fields, R. A. Ristinen,
and B. L. Smith, Nucl. Phys. A 302, 159 (1978).

[11] I. Levenberg, V. Pokrovsky, L. Tarasova, Van Cheng-Peng, and
I. Yutlandov, Nucl. Phys. 81(2), 81 (1966).

[12] W. W. Daehnick and T. S. Bhatia, Phys. Rev. C 7, 2366 (1973).
[13] F. S. Dietrich, M. C. Gregory, and J. D. Anderson, Phys. Rev. C

9, 973 (1974).
[14] H. Taketani, M. Adachi, M. Ogawa, and K. Ashibe, Nucl. Phys.

A 204, 385 (1973).

[15] J. R. Comfort, A. M. Nathan, W. J. Braithwaite, and J. R. Duray,
Phys. Rev. C 11, 2012 (1975).

[16] S. R. Lesher et al., Nucl. Instrum. Methods. A 621, 286
(2010).

[17] J. M. Allmond et al., Phys. Rev. C 81, 064316 (2010).
[18] T. J. Ross et al., Phys. Rev. C 85, 051304(R) (2012).
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