598 research outputs found

    Violation of energy-per-hadron scaling in a resonance matter

    Full text link
    Yields of hadrons, their average masses and energies per hadron at the stage of chemical freeze-out in (ultra)relativistic heavy-ion collisions are analyzed within the statistical model. The violation of the scaling / = 1 GeV observed in Au+Au collisions at s\sqrt{s} = 130 AGeV is linked to the formation of resonance-rich matter with a considerable fraction of baryons and antibaryons. The rise of the energy-per-hadron ratio in baryon-dominated matter is discussed. A violation of the scaling condition is predicted for a very central zone of heavy-ion collisions at energies around 40 AGeV.Comment: 5 pages incl. 3 figures and 2 tables, to be published in Phys. Rev.

    Transition to resonance-rich matter in heavy ion collisions at RHIC energies

    Get PDF
    The equilibration of hot and dense nuclear matter produced in the central region in central Au+Au collisions at s=200\sqrt{s}=200 AGeV is studied within the microscopic transport model UrQMD. The pressure here becomes isotropic at t5t \approx 5 fm/c. Within the next 15 fm/c the expansion of the matter proceeds almost isentropically with the entropy per baryon ratio S/A150S/A \approx 150. During this period the equation of state in the (P,ϵ)(P,\epsilon)-plane has a very simple form, P=0.15ϵP=0.15 \epsilon. Comparison with the statistical model (SM) of an ideal hadron gas reveals that the time of 20\approx 20 fm/cc may be too short to attain the fully equilibrated state. Particularly, the fractions of resonances are overpopulated in contrast to the SM values. The creation of such a long-lived resonance-rich state slows down the relaxation to chemical equilibrium and can be detected experimentally.Comment: Talk at the conference Strangeness'2000, to be published in J. of Phys.

    Transverse momentum dependence of directed particle flow at 160 AGeV

    Full text link
    The transverse momentum (ptp_t) dependence of hadron flow at SPS energies is studied. In particular, the nucleon and pion flow in S+S and Pb+Pb collisions at 160 AGeV is investigated. For simulations the microscopic quark-gluon string model (QGSM) is applied. It is found that the directed flow of pions v1(y,Δpt)v_1(y, \Delta p_t) changes sign from a negative slope in the low-ptp_t region to a positive slope at pt0.6p_t \geq 0.6 GeV/c as recently also observed experimentally. The change of the flow behaviour can be explained by early emission times for high-ptp_t pions. We further found that a substantial amount of high-ptp_t pions are produced in the very first primary NN collisions at the surface region of the touching nuclei. Thus, at SPS energies high-ptp_t nucleons seem to be a better probe for the hot and dense early phase of nuclear collisions than high-ptp_t pions. Both, in the light and in the heavy system the pion directed flow v1(pt,Δy)v_1(p_t, \Delta y) exhibits large negative values when the transverse momentum approaches zero, as also seen experimentally in Pb+Pb collisions. It is found that this effect is caused by nuclear shadowing. The proton flow, in contrary, shows the typical linear increase with rising ptp_t.Comment: REVTEX, 20 pages incl. 6 figures, revised and extended versio

    Dynamical vs geometric anisotropy in relativistic heavy-ion collisions: which one prevails?

    Full text link
    We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either v2v_2 (or v3v_3) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data.Comment: minor corrections, published versio

    Equation of state of resonance-rich matter in the central cell in heavy-ion collisions at s\sqrt{s}=200 AGeV

    Get PDF
    The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (s=200\sqrt{s}=200 AGeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t5t\approx 5 fm/cc after beginning of the collision. Within the next 15 fm/cc the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A150S/A \approx 150, and the equation of state in the (P,ϵ)(P,\epsilon) plane has a very simple form, P=0.15ϵP=0.15\epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t20t \approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.Comment: LATEX, 21 pages incl. 7 figure

    Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films

    Full text link
    The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. The phase diagrams in coordinates temperature - film thickness were calculated for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. Compressive misfit strains stimulate appearance of the spontaneous in-plane structural order parameter. Gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due to the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.Comment: 35 pages, 9 figures, 1 appendix, 1 tabl

    Baryon stopping and strange baryon/antibaryon production at SPS energies

    Full text link
    The amount of proton stopping in central Pb+Pb collisions from 20-160 AGeV as well as hyperon and antihyperon rapidity distributions are calculated within the UrQMD model in comparison to experimental data at 40, 80 and 160 AGeV taken recently from the NA49 collaboration. Furthermore, the amount of baryon stopping at 160 AGeV for Pb+Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central collisions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80 and 160 AGeV are underestimated by up to factors of 3 - depending on the annihilation cross section employed - which might be addressed to missing multi-meson fusion channels in the UrQMD model.Comment: 18 pages, including 7 eps figures, to be published in Phys. Rev.

    Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    Get PDF
    The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. The essentially dynamical origin of the flow fluctuations in hydro-inspired freeze-out approach has been established. It is shown that the simple modification of the model via introducing the distribution over spatial anisotropy parameters permits HYDJET++ to reproduce both elliptic and triangular flow fluctuations and related to it eccentricity fluctuations of the initial state at the LHC energy.Comment: 12 pages including 9 figures as EPS-files; prepared using LaTeX package for publication in the European Physical Journal

    Relativistic Hadron-Hadron Collisions in the Ultra-Relativistic Quantum Molecular Dynamics Model (UrQMD)

    Get PDF
    Hadron-hadron collisions at high energies are investigated in the Ultra-relativistic-Quantum-Molecular-Dynamics approach (UrQMD). This microscopic transport model is designed to study pp, pA and A+A collisions. It describes the phenomenology of hadronic interactions at low and intermediate energies (s<5\sqrt s <5 GeV) in terms of interactions between known hadrons and their resonances. At high energies, s>5\sqrt s >5 GeV, the excitation of color strings and their subsequent fragmentation into hadrons dominates the multiple production of particles in the UrQMD model. The model shows a fair overall agreement with a large body of experimental h-h data over a wide range of h-h center-of-mass energies. Hadronic reaction data with higher precision would be useful to support the use of the UrQMD model for relativistic heavy ion collisions.Comment: 66 pages, Download the UrQMD model from http://www.th.physik.uni-frankfurt.de/~urqmd/urqmd.htm
    corecore