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Abstract

The equilibration of hot and dense nuclear matter produced in the central

cell of central Au+Au collisions at RHIC (
√

s = 200A GeV) energies is stud-

ied within a microscopic transport model. The pressure in the cell becomes

isotropic at t ≈ 5 fm/c after beginning of the collision. Within the next 15

fm/c the expansion of matter in the cell proceeds almost isentropically with

the entropy per baryon ratio S/A ∼= 150, and the equation of state in the

(P, ε) plane has a very simple form, P = 0.15ε. Comparison with the statis-

tical model of an ideal hadron gas indicates that the time t ≈ 20 fm/c may

be too short to reach the fully equilibrated state. Particularly, the creation

of long-lived resonance-rich matter in the cell decelerates the relaxation to

chemical equilibrium. This resonance-abundant state can be detected exper-

imentally after the thermal freeze-out of particles.

PACS numbers: 25.75.-q, 24.10.Lx, 24.10.Pa, 64.30+t
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I. INTRODUCTION

The assumption that strongly interacting hadronic (or rather partonic) matter, produced
in nucleus-nucleus collisions at high energy, can reach a state of local equilibrium (LE) [1–3]
is one of the most important topics in relativistic heavy-ion program [4]. The degree of equi-
libration can be checked by fitting the measured particle yields and transverse momentum
spectra to that of the thermal model in order to extract the conditions of the fireball at the
chemical and thermal freeze-out (see, e.g., [5–12] and references therein). Here the equilib-
rium particle abundances, which correspond to a certain temperature, T , baryon chemical
potential, µB, and strangeness chemical potential, µS, can be determined. However, the
analysis is complicated, e.g., by the presence of collective flow of particles and the non-
homogeneity of the baryon charge distribution in the reaction volume. The volume of the
fireball is also taken as a free parameter in the thermal model. Various non-equilibrium
microscopic transport-, string-, partonic-, etc. models have been applied to verify the ap-
pearance of at least local equilibrium in the course of heavy-ion collisions at relativistic and
ultrarelativistic energies [13–24]. To reduce the number of unknown parameters and simplify
the analysis it has been suggested [20,21] to examine the equilibrium conditions in the cen-
tral cell of relativistic heavy-ion collisions, simulated by one of the microscopic models. For
these purposes we employ the microscopic Ultra-relativistic Molecular Dynamics (UrQMD)
transport model, which nicely describe the available experimental data on hadron-hadron
and nucleus-nucleus collisions in a broad energy range [22].

The central cell of symmetric heavy-ion collisions is a convenient system because the
velocity of its center of mass is essentially zero. The cell should be neither too small nor
too large. Previous studies at energies from 10.7A GeV (AGS) to 160A GeV (SPS) [20,21]
have shown that the cubic cell with volume V = 5 × 5 × 5 = 125 fm3 is well suited for the
analysis. The aim of the present paper is to study the relaxation of hot nuclear matter,
simulated within the microscopic model, in the central cell in Au+Au interactions at RHIC
(
√

s = 200A GeV) energy.
The paper is organized as follows. The conditions of kinetic equilibrium in the cell are

discussed in Sec. II. Section III describes the statistical model (SM) of an ideal hadron
gas employed for the comparison with the microscopic calculations. The relaxation of hot
nuclear matter in the cell to thermal and chemical equilibrium is studied in Sec. IV. Finally,
conclusions are drawn in Sec. V.

II. KINETIC EQUILIBRIUM

First, the kinetic equilibrium has to be verified. The collective flow in the cell should be
isotropic and small, so it cannot significantly distort the momentum distributions of particles.
As shown in Fig. 1, the average longitudinal velocity in the central cell at RHIC energies
reaches its maximum at ≈ 1 fm/c after the Lorentz-contracted nuclei have completely passed
through each other. The longitudinal flow rapidly drops and converges to the developing
transverse flow. The longitudinal collective velocity of particles becomes smaller than vflow =
0.15 c at t = 5 − 6 fm/c at RHIC, while the similar process takes t = 8 − 10 fm/c at the
AGS and SPS energies. This gives a small correction, only 〈mN v2

flow/2〉 ≈ 7 MeV for the
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nucleon spectra, and less than a MeV for pions, whereas the characteristic temperatures are
around 140 MeV.

Velocity distributions of hadron species become isotropic and nearly Maxwellian quite
soon [20,21]. Isotropy of the velocity distributions results in pressure isotropy. The pres-
sure in the longitudinal direction in the cell, calculated according to virial theorem [25], is
compared in Fig. 2(a) with the transverse pressure. The time of convergence of longitudinal
pressure to the transverse one decreases from 10 fm/c to 5 fm/c with rising incident energy
from AGS to RHIC, respectively. Thus, the kinetic equilibrium in the central cell in Au+Au
collisions at RHIC energy is reached at t ≈ 5 fm/c.

III. STATISTICAL MODEL OF AN IDEAL HADRON GAS

To verify that the matter in the cell is in thermal and chemical equilibrium one has to
compare the snapshot of hadron yields and energy spectra in the cell with the equilibrium
spectra of hadrons obtained in the statistical model (SM) of an ideal hadron gas containing
essentially the same number of baryonic and mesonic degrees of freedom [23]. We recall
the procedure briefly: the values of energy density, ε, baryon density, ρB, and strangeness
density, ρS, extracted from the microscopic calculations in the cell, are used as an input to
the system of nonlinear equations of the SM

εmic =
1

V

∑

i

ESM
i (T, µB, µS), (1)

ρmic
B =

1

V

∑

i

Bi · NSM
i (T, µB, µS), (2)

ρmic
S =

1

V

∑

i

Si · NSM
i (T, µB, µS), (3)

containing the baryon charge, Bi, and strangeness, Si, of the hadron species i. This
procedure enables one to determine temperature, T , baryon chemical potential, µB, and
strangeness chemical potential, µS. If the set of three parameters (T, µB, µS) is fixed, all
macroscopic characteristics of the equilibrated system can be determined unambiguously.
For instance, the particle yields, NSM

i , total energy, ESM
i , and pressure, P SM, are calculated

within the SM via the Gibbs distribution function

fi(p, mi) ∝ exp
(

−
√

p2 + m2
i /T + µi/T

)

, (4)

where p and mi are the momentum and the mass of the hadron species i, respectively.
Namely,

NSM
i =

V gi

(2πh̄)3

∫

f(p, mi) d3p, (5)

ESM
i =

V gi

(2πh̄)3

∫

(p2 + m2
i )

1/2 f(p, mi) d3p, (6)

P SM =
∑

i

gi

(2πh̄)3

∫

p2

3(p2 + m2
i )

1/2
f(p, mi) d3p, (7)
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with gi being the degeneracy factor. The entropy density s = S/V can be determined either
via the distribution function (4)

s = −
∑

i

gi

(2πh̄)3

∫

∞

0

f(p, mi) [ln f(p, mi) − 1] d3p, (8)

or directly from Gibbs thermodynamical identity

Ts = ε + P SM − µBρB − µSρS. (9)

The chemical potential µi of the ith hadron is determined by its baryon and strangeness
charge, µi = µBBi +µSSi. Thermal and chemical equilibrium is assumed to occur in the cell
when the spectra of hadrons in the microscopic cell calculations become close to the spectra
predicted by the SM.

IV. RELAXATION TO CHEMICAL AND THERMAL EQUILIBRIUM

At the isotropic stage the total microscopic pressure is close to the grand canonical
pressure, P SM, as shown in Fig. 2(a). Both pressures converge at about t = 5 fm/c, which
is chosen as a starting point for the comparison with the SM. The input, {ε, ρB, ρS}, and
output, {T, µB, µS}, parameters are listed in Table I together with the microscopic pressure,
entropy density, and entropy per baryon in the cell. The final time of the calculation, defined
from conventional freeze-out conditions ε ≈ 0.1 GeV/fm3 or ρtot ≈ 0.5ρ0 [21], corresponds
to t = 20 − 21 fm/c. One may see that in spite of different initial conditions the freeze-out
time in the central cell in heavy-ion collisions at RHIC energies is similar to corresponding
freeze-out times at AGS [20] and SPS [21] energies. In accordance with general estimates
[8,26] the baryochemical potential at RHIC energies is small while the temperatures are well
above the anticipated temperature for the QCD phase transition, T ≈ 160 ± 10 MeV. The
entropy per baryon in the cell varies slightly after the beginning of the kinetic equilibrium
stage. A comparison with s/ρB at lower energies is shown in Fig. 2(b). The hadron-
string matter in the central cell seems to expand isentropically with s/ρB ≡ S/A ≈ 12
(AGS), 32 (SPS), and 150 (RHIC). Note that the results of the simulations at AGS and
SPS energies are intriguingly close to the entropy per baryon values extracted from the
thermal model fit to experimental data, namely, (S/A)AGS ≈ 14 and (S/A)SPS ≈ 36 [8]. It
is most interesting to compare the predicted value (s/ρB)RHIC = 150− 170 to the upcoming
RHIC data. Together, isotropy in the pressure sector, isotropic and nearly Maxwellian
velocity distributions of hadrons, and almost isentropic expansion of matter in the central
cell strongly support the idea that a hydrodynamic regime is established after a certain time.
In the following, we extract the equation of state (EOS) of hadron-resonance-string matter
from the microscopic simulations at the quasi-equilibrium stage of nuclear collisions, which
is part of this hydrodynamic picture.

The evolution of the pressure with the energy density is depicted in Fig. 3(a) for AGS,
SPS, and RHIC energies in the central cell, respectively. Several interesting facts can be
gained from this figure. First, the pressure drops linearly with the decreasing energy density
for all three energies. It means that the ratio P/ε remains constant for the whole time
interval of the (quasi)equilibrium stage. Thus the equation of state in the (P, ε) plane has a
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very simple form: P = 0.12 ε at AGS, and P = 0.15 ε at SPS and RHIC. We see that despite
the significant difference in the center-of-mass energy of the nuclei, colliding at

√
s = 17A

GeV vs.
√

s = 200A GeV, the ratio P/ε in the central cell is saturated already at SPS
energies.

Figure 3(b) presents the evolution of the EOS in the (T, µB) plane. The baryon chemical
potential in the cell increases with decreasing temperature at AGS and SPS energies, but
remains almost constant (and small) at RHIC. Also, all three curves can be well approxi-
mated by a simple linear dependence. This fact deserves explanation. Substituting P = aε
in Eq. (9) and omitting the term µSρS, because the net strangeness density in the cell is
quite small, we get

T
s

ρB

=
ε(1 + a)

ρB

− µB . (10)

If the ratio ε/ρB is constant, then the temperature T would depend linearly only on the
baryon chemical potential µB, and vice versa. However, the energy per baryon slightly
decreases within the considered time interval for all three energies. At the final stage it
drops to approximately 80-90% of its initial value. Therefore, from Fig. 3(b) it follows that
the evolution of temperature as a function of ε/ρB and µB is mainly determined by the
change of energy per baryon, and not the baryon chemical potential.

Energy spectra, dN/(4πpEdE), of π’s, N ’s, Λ’s, ∆’s and K’s in the cell at the stage of
kinetic equilibrium are shown in Fig. 4 at two different times, t = 5 fm/c and t = 10 fm/c at
RHIC energies. At t = 5 fm/c the spectra of baryons seem to be in a reasonable agreement
with those of the SM, while the slopes of the meson spectra are steeper compared to the
predictions of the statistical model. This means, that the apparent temperatures of mesons,
especially pions, are lower than the temperature given by the SM. Moreover, the energy
spectra of pions can be decomposed on two components representing low and high energy
pions. At t = 5 fm/c the fit by two exponents to the pion spectrum yields the temperatures
T π

low ≈ 114 MeV and T π
high ≈ 158 MeV, while at t = 10 fm/c the results of the fit are T π

low ≈
100 MeV and T π

high ≈ 150 MeV, respectively. Although the apparent temperature of pions
from the high energy tail of the energy spectrum is closer to the temperature given by the
SM, T SM

t=10 = 171 MeV, one may conclude that the thermal equilibrium in the central cell is
not reached yet. The slopes of baryon spectra in the microscopic calculations at t = 10 fm/c
are also steeper than the SM slope. Since the energy density ε is the same in both models, the
lower temperatures of hadronic spectra in the microscopic case indicate that the hot matter
in the cell is not in chemical equilibrium. Therefore, one might expect that the fractions
of mesons and resonances in the UrQMD cell are overpopulated. These extra-particles
consume significant part of the total energy and effectively ”cool” the hadron cocktail. The
reheating proceeds via the absorption of mesons in the processes like ππ → ρ, ρρ → ππ,
or πN → ∆, ∆N → NN , etc. Thus, our next step is to study the time evolution of
hadron abundances in the cell. Note also that the difference between the temperatures of
meson and baryon spectra can be explained by the fact that baryons experience many more
elastic collisions and interactions with the resonance production per particle, which drive
the system toward thermal equilibrium, than mesons. The mean number of interactions
per, e.g., nucleon or delta increases from 5 interactions at t = 5 fm/c to 10 interactions at
t = 10 fm/c. In contrast, pions (kaons), which are readily absorbed and produced by the
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resonance-string hadron matter, suffer only 0.5 (1) elastic collision per particle at t = 5 fm/c
and 1.8 (2.5) ones at t = 10 fm/c.

Figure 5 depicts the yields of the main hadron species in the cell within the time inter-
val 5 fm/c ≤ t ≤ 19 fm/c. It is interesting that microscopic spectra of pions, which are
underestimated by the SM in the central cell at lower energies [21], converge to the SM
predictions at t ≈ 15 fm/c. Also, the statistical model overestimates yields of nucleons,
lambdas, and kaons, while the yields of both baryon and meson resonances are reproduced
quite well. Since the baryon number and the strangeness are conserved in strong interac-
tions, where is the rest of the hypercharge, Y = B + S, in the UrQMD calculations in the
cell? As seen from Table II, where the partial densities of baryons RB and antibaryons RB̄

in the microscopic and macroscopic model are listed (the net values ρB ≡ RB−RB̄ are listed
in Table I), the total yields of baryons and antibaryons in the SM are larger than those of
the UrQMD. The hadron-resonance-string matter in the cell is not in chemical equilibrium;
that is why the density of antibaryons is 2-3 times smaller than the equilibrium values. The
results on strangeness densities are listed in Table III for the strange baryons, mesons, and
their antiparticles, respectively. Here the net strangeness is ρS ≡ RB

S + RB̄

S̄
+ RM

S + RM

S̄
.

In line with the previous observation, the SM predicts significantly larger abundances of
both strange baryons and strange antibaryons at 5 ≤ t ≤ 11 fm/c in the cell, while the
densities of strange mesons are pretty similar. It is worth noting here that strangeness is
underpredicted by the UrQMD if compared to experimental data at SPS energies, see [27].
At t ≈ 12 fm/c the situation turns around: microscopic yields of strange baryons become
closer to those of the SM, but the predictions for strange mesons diverge. Note also that up
to t = 13 fm/c the net strangeness of baryons in microscopic calculations is larger compared
to the net strangeness of baryons in the SM at the expense of the net mesonic strangeness.
After t = 13 fm/c the fractions of the net strangeness deposited in baryonic and mesonic
sectors in the microscopic calculations coincide with the SM results.

Finally, the ratios of hadronic abundances are studied (see Fig. 6). Here the results are
presented separately for non-strange and strange baryons and mesons. In the baryon sector
the resonances dominate over the strange and non-strange baryons until the end of the
simulations. This can be taken as an indication of the creation of long-lived resonance-rich
matter. Recall that the formation of resonance abundant matter plays an important role in
the evolution of the system produced in nuclear collisions at lower bombarding energies [28].
It has been suggested that the significance of the resonances, mainly ∆’s, for the system
development should be diminished with rising center-of-mass energy of the collisions. This
assumption is not confirmed in our simulations. The fraction of baryon resonances is almost
70% of all baryons in the cell at RHIC at 5 ≤ t ≤ 19 fm/c, while at SPS and AGS the number
of baryon resonances decreases from 70% to 35%, and from 60% to 25%, respectively. The
meson fractions of resonances shrink within the time interval 5 ≤ t ≤ 19 fm/c from 60%
to 30% (RHIC), 50% to 20% (SPS), and 40% to 15% (AGS). But at RHIC energies the
hot hadronic matter in the cell as well as in the whole volume of the reaction is meson
dominated. The mesons, baryons, and antibaryons carry 90%, 7%, and 3% of the total
number of particles in the RHIC cell at t ≥ 10 fm/c (cf. 85%, 14.5%, 0.5% at SPS and 50%,
50%, 0% at AGS). The microscopic ratios for mesons (Fig. 6, right panels) seem to be very
close to the SM ratios. However, one has to keep in mind that the temperatures given by the
SM fit are 40-50 MeV higher than the apparent temperatures of meson species. Since the

6



freeze-out occurs at t ≈ 21 fm/c in the central cell at RHIC energies, the matter in the cell
is frozen before reaching thermal and chemical equilibrium. This circumstance significantly
complicates the extraction of the chemical and thermal freeze-out parameters by means of
the standard thermal model fit.

But can the formation of the resonance-abundant matter be traced experimentally? To
answer this question the rapidity distributions of baryon resonances are plotted in Fig. 7
for central (b = 3 fm) Pb+Pb collisions at Elab = 160A GeV and Au+Au collisions at√

s = 200A GeV, respectively. (The UrQMD predictions for other global observables at
RHIC energies can be found in [29]). Here only those resonances that decay into ground state
hadrons, i.e. no final state interactions, have been accounted for. The rapidity distributions
of baryon resonances at SPS energies have a characteristic Gaussian-like shape, while the
dN/dy distributions of those at RHIC energies are nearly flat in the rapidity interval |y| ≤
3.5 resembling the Bjorken scaling picture of nuclear matter expansion at ultra-relativistic
energies [3]. More than 80% of the baryon non-strange resonances at RHIC energies are
still ∆’s (1232). One can see that the density of directly reconstructible baryon resonances,
especially ∆’s and Λ’s + Σ’s, per unit rapidity at RHIC energies is quite high. Therefore,
the resonance-rich hadron matter produced in central Au+Au collisions at

√
s = 200A GeV

can be detected.

V. CONCLUSIONS

In summary, the microscopic transport model UrQMD is applied to study the equation of
state of the hot meson-dominated hadron-string matter produced in the central cell (V = 125
fm3) of Au+Au collisions at

√
s = 200A GeV. After the restoration of the isotropy of pressure

gradients, the hadron spectra in the cell are compared with those of the statistical model of
an ideal hadron gas. It is found that the expansion of matter in central collisions proceeds
with constant entropy per baryon ratio in the central cell, S/A = s/ρB

∼= 150. Since the
S/A ratios for the central cell in A+A collisions, calculated at AGS and SPS energies, are
very close to the ratios extracted from the analysis of the experimental data, the expected
value of the entropy per baryon ratio at RHIC lies within the range 150 ≤ s/ρB ≤ 170. The
microscopic pressure in the cell is also close to the SM pressure. It shows a linear dependence
on the energy density in the cell, P = 0.15 ε, which is similar to the P (ε) dependence in the
central cell at SPS energies [21]. The obtained result is in accord with the EOS P ∼= 0.2 ε,
derived for an ideal gas of hadrons and hadron resonances [30]. The temperature T SM in the
cell at RHIC energies is shown to be nearly independent of the baryon chemical potential
µB.

The further comparison of the energy spectra and yields of hadrons with the SM predic-
tions shows that the full thermal and chemical equilibrium is not reached even at the late
stage of the reaction. This means that the times t ≈ 20 fm/c may be too short for the relax-
ation process. Particularly, the deceleration of the relaxation to equilibrium is attributed to
the creation of the long-lived resonance-abundant matter. For instance, pions which are fre-
quently absorbed and produced in various inelastic processes, including formation and decay
of resonances, experience on average only two elastic collisions per particle. This appears to
be insufficient to reach thermal equilibrium in the system of strongly interacting particles.
In turn, inelastic collisions try to restore chemical equilibrium in the cell. Non-equilibrium
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densities of strange and non-strange baryons, like N ’s, Λ’s, Σ’s, etc, and their antiparticles
are still lower than the equilibrium values. Amazingly, the yields of resonances are in accord
with the SM values from the very early times t ≈ 5 fm/c. Even the abundances of pions are
equalizing after t ≥ 15 fm/c. However, this result should be taken with a grain of salt. The
fitting temperature of the thermal model is higher than the inverse slope parameters of the
energy spectra of particles in the cell, i.e., the temperature of the chemical freeze-out will
be overestimated by the SM fit.

According to microscopic calculations, resonance-rich matter survives until the thermal
freeze-out when the contact between the hadrons is lost. It remains a challenging task
to verify the formation of long-lived resonance-abundant matter in heavy-ion collisions at√

s = 200A GeV experimentally.
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H. Stöcker, and W. Greiner, Phys. Lett. B 435, 9 (1998).

[18] J. Sollfrank, U. Heinz, H. Sorge, and N. Xu, Phys. Rev. C 59, 1637 (1999);
J. Phys. G 25, 363 (1999).

[19] W. Cassing, E.L. Bratkovskaya, S. Juchem, Nucl. Phys. A 674, 249 (2000).
[20] L.V. Bravina, M.I. Gorenstein, M. Belkacem, S.A. Bass, M. Bleicher, M. Brandstetter,

M. Hoffman, S. Soff, C. Spieles, H. Weber, H. Stöcker, and W. Greiner, Phys. Lett. B
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FIG. 1. Time evolution of the velocities of longitudinal (solid lines) and transverse

(dashed lines) flows of baryons (left panels) and mesons (right panels) in an asymmetric cell

0 ≤ {x, y, z} ≤ 2.5 fm of central heavy-ion collisions at Elab = 10.7AGeV (upper row),

Elab = 160AGeV (middle row), and
√

s = 200A GeV (bottom row), respectively. Arrows indi-

cate the times tcr needed for Lorentz-contracted nuclei to pass through each other.
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FIG. 2. (a) The longitudinal (solid lines) and the transverse (dashed lines) diagonal compo-

nents of the pressure tensor P in the central cell of heavy-ion collisions at AGS, SPS, and RHIC

energies compared to the SM results (dotted lines).

(b) Time evolution of the entropy per baryon ratio, s/ρ
B

= S/A, in the central cell with V = 125

fm3 in heavy-ion collisions at AGS, SPS, and RHIC energies, respectively. Solid lines denote mi-

croscopic calculations with the UrQMD model, dashed lines show the predictions of the statistical

model.
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FIG. 3. (a) The evolution of pressure P and baryon density ε in the central cells of the

heavy-ion collisions at AGS, SPS, and RHIC energies.

(b) The same as (a) but for the (T, µB)-plane. Solid symbols correspond to the stage of kinetic

equilibrium, open symbols indicate the preequilibrium stage. The hatched area shows the expected

region of the quark-hadron phase transition.
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FIG. 4. Energy spectra of N (circles), Λ (squares), π (triangles up), K+ (open stars), K−

(triangles down) and ∆ (solid stars) in the central cell of Au+Au collisions at RHIC at t = 5 fm/c

(upper panel) and t = 10 fm/c (bottom panel). Dashed lines show the predictions of the SM.
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FIG. 5. The yields of main hadron species in the central cell of Au+Au collisions at
√

s = 200A

GeV as a function of time as obtained in the model UrQMD (circles) together with the predictions

of the SM (stars).
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FIG. 6. Time evolution of the hadron to resonance ratio R = H/Hres in the central cell

of Au+Au collisions at RHIC shown separately for baryons (left panels), antibaryons (middle

panels), and mesons (right panels), as well as for non-strange hadrons (upper row), strange hadrons

(middle row), and total hadron yields (bottom row). Circles denote the UrQMD predictions, stars

correspond to the SM results.
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FIG. 7. The rapidity distributions of baryon resonances in Pb+Pb collisions at

Elab = 160A GeV (left panel) and in Au+Au collisions at
√

s = 200A GeV (right panel). Collisions

are calculated in the UrQMD with the impact parameter b = 3 fm.
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TABLES

TABLE I. The time evolution of the thermodynamic characteristics of hadronic matter in the

central cell of volume V = 125 fm3 in central Au+Au collisions at RHIC (
√

s = 200A GeV) energy.

The temperature T , baryon chemical potential µB, strange chemical potential µS, pressure P ,

entropy density s, and entropy density per baryon density s/ρB, are extracted from the statistical

model of an ideal hadron gas, using the microscopically evaluated energy density εcell, baryonic

density ρcell
B , and strangeness density ρcell

S as input.

time εcell ρcell
B ρcell

S T µB µS P s s/ρcell
B

fm/c MeV/fm3 fm−3 fm−3 MeV MeV MeV MeV/fm3 fm−3

5 2330 0.093 -0.0042 201 39.7 13.0 349 13.3 143

6 1705 0.071 -0.0047 193 41.0 12.1 257 10.1 142

7 1319 0.059 -0.0011 187 44.2 13.4 201 8.1 138

8 1031 0.045 0.0011 181 44.3 13.6 159 6.5 144

9 820 0.040 -0.0044 176 47.2 10.4 128 5.4 135

10 656 0.029 -0.0022 171 44.1 9.8 104 4.4 152

11 544 0.025 -0.0044 167 47.4 11.2 87 3.8 149

12 446 0.018 0.0089 163 42.6 10.6 72 3.2 176

13 346 0.015 0.0040 158 50.4 15.6 57 2.6 165

14 290 0.012 0.0024 154 48.0 12.9 49 2.2 180

15 241 0.009 -0.0044 150 40.7 6.5 41 1.9 214

16 200 0.007 0.0022 147 37.8 6.6 35 1.6 250

17 168 0.006 -0.0031 143 42.7 -1.1 30 1.4 218

18 145 0.005 -0.0028 140 43.4 -1.9 26 1.2 227

20



TABLE II. The partial baryon densities of baryons and antibaryons, RB/B̄, given by the

microscopic model and obtained by the SM fit to the URQMD data, within the time interval

5 ≤ t ≤ 19 fm/c in the central cell of Au+Au collisions at RHIC energies.

time Rmic
B Rmic

B̄
RSM

B RSM

B̄

fm/c fm−3 fm−3 fm−3 fm−3

5 0.183 0.090 0.332 0.239

6 0.135 0.064 0.236 0.165

7 0.106 0.047 0.178 0.119

8 0.082 0.036 0.134 0.088

9 0.065 0.025 0.105 0.065

10 0.049 0.020 0.079 0.050

11 0.041 0.016 0.064 0.039

12 0.031 0.013 0.049 0.031

13 0.025 0.010 0.036 0.021

14 0.020 0.008 0.029 0.017

15 0.016 0.007 0.022 0.013

16 0.012 0.006 0.017 0.011

17 0.010 0.004 0.014 0.008

18 0.009 0.004 0.011 0.008

19 0.008 0.003 0.010 0.005

TABLE III. The partial strangeness densities, Ri
S, of baryons, mesons, and their antiparticles,

given by the microscopic model and obtained by the SM fit to the URQMD data, within the time

interval 5 ≤ t ≤ 19 fm/c in the central cell of Au+Au collisions at RHIC energies.

time (RB
S )mic (RB̄

S̄
)mic (RB

S )SM (RB̄

S̄
)SM (RM

S̄
)mic (RM

S )mic (RM

S̄
)SM (RM

S )SM

fm/c fm−3 fm−3 fm−3 fm−3 fm−3 fm−3 fm−3 fm−3

5 -0.064 0.039 -0.160 0.129 0.216 -0.194 0.216 -0.190

6 -0.049 0.029 -0.112 0.088 0.169 -0.154 0.169 -0.149

7 -0.038 0.020 -0.083 0.063 0.141 -0.124 0.139 -0.120

8 -0.031 0.017 -0.062 0.047 0.115 -0.099 0.115 -0.098

9 -0.024 0.013 -0.048 0.033 0.094 -0.087 0.094 -0.083

10 -0.019 0.010 -0.036 0.025 0.077 -0.071 0.078 -0.070

11 -0.017 0.009 -0.028 0.019 0.063 -0.056 0.068 -0.059

12 -0.014 0.007 -0.021 0.015 0.052 -0.045 0.058 -0.050

13 -0.011 0.006 -0.015 0.011 0.045 -0.036 0.048 -0.039

14 -0.009 0.005 -0.012 0.008 0.038 -0.031 0.041 -0.035

15 -0.008 0.005 -0.009 0.006 0.027 -0.024 0.034 -0.031

16 -0.006 0.004 -0.007 0.005 0.023 -0.020 0.029 -0.026

17 -0.005 0.002 -0.006 0.003 0.017 -0.017 0.023 -0.024

18 -0.005 0.002 -0.005 0.003 0.014 -0.015 0.020 -0.021

19 -0.005 0.002 -0.005 0.002 0.012 -0.015 0.017 -0.021
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