61 research outputs found

    Towards theory of C-symmetries

    Full text link
    The concept of C-symmetry originally appeared in PT-symmetric quantum mechanics is studied within the Krein spaces framework

    Lax-Phillips scattering theory for PT-symmetric \rho-perturbed operators

    Full text link
    The S-matrices corresponding to PT-symmetric \rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory

    Singularly Perturbed Self-Adjoint Operators in Scales of Hilbert spaces

    Get PDF
    Finite rank perturbations of a semi-bounded self-adjoint operator A are studied in the scale of Hilbert spaces associated with A. A concept of quasi-boundary value space is used to describe self-adjoint operator realizations of regular and singular perturbations of A by the same formula. As an application the one-dimensional Schr\"{o}dinger operator with generalized zero-range potential is considered in the Sobolev space W^p_2(\mathbb{R}), p\in\mathbb{N}.Comment: 26 page

    PT Symmetric, Hermitian and P-Self-Adjoint Operators Related to Potentials in PT Quantum Mechanics

    Get PDF
    In the recent years a generalization H=p2+x2(ix)ϵH=p^2 +x^2(ix)^\epsilon of the harmonic oscillator using a complex deformation was investigated, where \epsilon\ is a real parameter. Here, we will consider the most simple case: \epsilon even and x real. We will give a complete characterization of three different classes of operators associated with the differential expression H: The class of all self-adjoint (Hermitian) operators, the class of all PT symmetric operators and the class of all P-self-adjoint operators. Surprisingly, some of the PT symmetric operators associated to this expression have no resolvent set
    corecore