2,204 research outputs found

    Quantum feedback control of a solid-state qubit

    Full text link
    We have studied theoretically the basic operation of a quantum feedback loop designed to maintain a desired phase of quantum coherent oscillations in a single solid-state qubit. The degree of oscillations synchronization with external harmonic signal is calculated as a function of feedback strength, taking into account available bandwidth and coupling to environment. The feedback can efficiently suppress the dephasing of oscillations if the qubit coupling to the detector is stronger than coupling to environment.Comment: Extended version of cond-mat/0107280 (5 pages, 5 figures); to be published in PRB (RC

    Spectrum of qubit oscillations from Bloch equations

    Full text link
    We have developed a formalism suitable for calculation of the output spectrum of a detector continuously measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic Bloch equations. The results coincide with that obtained using Bayesian and master equation approaches. The previous results are generalized to the cases of arbitrary detector response and finite detector temperature.Comment: 8 page

    Nonideal quantum detectors in Bayesian formalism

    Full text link
    The Bayesian formalism for a continuous measurement of solid-state qubits is derived for a model which takes into account several factors of the detector nonideality. In particular, we consider additional classical output and backaction noises (with finite correlation), together with quantum-limited output and backaction noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a single qubit and then generalized to the measurement of entangled qubits.Comment: 10 page

    Measurement of the shot noise in a single electron transistor

    Full text link
    We have systematically measured the shot noise in a single electron transistor (SET) as a function of bias and gate voltages. By embedding a SET in a resonance circuit we have been able to measure its shot noise at the resonance frequency 464 MHz, where the 1/f noise is negligible. We can extract the Fano factor which varies between 0.5 and 1 depending on the amount of Coulomb blockade in the SET, in very good agreement with the theory.Comment: 4 figure

    Entanglement of solid-state qubits by measurement

    Full text link
    We show that two identical solid-state qubits can be made fully entangled (starting from completely mixed state) with probability 1/4 just measuring them by a detector, equally coupled to the qubits. This happens in the case of repeated strong (projective) measurements as well as in a more realistic case of weak continuous measurement. In the latter case the entangled state can be identified by a flat spectrum of the detector shot noise, while the non-entangled state (probability 3/4) leads to a spectral peak at the Rabi frequency with the maximum peak-to-pedestal ratio of 32/3.Comment: 5 pages, 2 figure

    Quantum Nondemolition Charge Measurement of a Josephson Qubit

    Full text link
    In a qubit system, the measurement operator does not necessarily commute with the qubit Hamiltonian, so that the readout process demolishes (mixes) the qubit energy eigenstates. The readout time is therefore limited by such a mixing time and its fidelity will be reduced. A quantum nondemolition readout scheme is proposed in which the charge of a flux qubit is measured. The measurement operator is shown to commute with the qubit Hamiltonian in the reduced two-level Hilbert space, even though the Hamiltonian contains non-commuting charge and flux terms.Comment: 4 pages, 3 figures, a paragraph added to describe how the scheme works in charge regim
    • …
    corecore