Abstract

We show that two identical solid-state qubits can be made fully entangled (starting from completely mixed state) with probability 1/4 just measuring them by a detector, equally coupled to the qubits. This happens in the case of repeated strong (projective) measurements as well as in a more realistic case of weak continuous measurement. In the latter case the entangled state can be identified by a flat spectrum of the detector shot noise, while the non-entangled state (probability 3/4) leads to a spectral peak at the Rabi frequency with the maximum peak-to-pedestal ratio of 32/3.Comment: 5 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020