89 research outputs found
Tb(III) complexes with nonyl-substituted calix[4]arenes as building blocks of hydrophilic luminescent mixed polydiacetylene-based aggregates
© 2018 The present work for the first time introduces PDA-based vesicles as convenient supporters of luminescent water insoluble Tb3+ complexes. The specific cyclophanic structure of the ligands, where upper and lower calix[4]arene rims are decorated by nonyl- and chelating groups correspondingly provides both complex formation with Tb3+ ions with the coordination of the latter via two 1,3-diketonate groups and self- or mixed aggregation of the complexes. The conditions of the self-aggregation of the Tb3+ complexes are revealed, although the self-aggregates are unstable being converted into the nanosized precipitates which tend to further aggregation and phase separation. The complexes exhibit Tb(III)-centered luminescence which tends to change in time following the phase separation processes. The embedding of the Tb3+ complexes into the PDA-based vesicles results in the mixed aggregates with significant Tb(III)-centered luminescence and significant colloidal stability. The latter arises from high negative electrokinetic potential values due to exterior carboxylic/carboxylate groups of the PDA vesicles
Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions
Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future
A Novel Peptide Derived from Human Pancreatitis-Associated Protein Inhibits Inflammation In Vivo and In Vitro and Blocks NF-Kappa B Signaling Pathway
BACKGROUND: Pancreatitis-associated protein (PAP) is a pancreatic secretory protein belongs to the group VII of C-type lectin family. Emerging evidence suggests that PAP plays a protective effect in inflammatory diseases. In the present study, we newly identified a 16-amino-acid peptide (named PAPep) derived from C-type lectin-like domain (CTLD) of human PAP with potent anti-inflammatory activity using both in vivo and in vitro assays. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the anti-inflammatory effect of PAPep on endotoxin-induced uveitis (EIU) in rats and demonstrated that intravitreal pretreatment of PAPep concentration-dependently attenuated clinical manifestation of EIU rats, reduced protein leakage and cell infiltration into the aqueous humor (AqH), suppressed tumor necrosis factor (TNF)-α, interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein (MCP)-1 production in ocular tissues, and improved histopathologic manifestation of EIU. Furthermore, PAPep suppressed the LPS-induced mRNA expression of TNF-α and IL-6 in RAW 264.7 cells, inhibited protein expression of ICAM-1 in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) as well as U937 cells adhesion to HUVECs. Western blot analysis in ocular tissues and different cell lines revealed that the possible mechanism for this anti-inflammatory effect of PAPep may depend on its ability to inhibit the activation of NF-kB signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the sequence of PAPep is within the critically active region for the anti-inflammatory function of PAP and the peptide may be a promising candidate for the management of ocular inflammatory diseases
Photopolymerization of polydiacetylene in hybrid liposomes:Effect of polymerization on stability and response to pathogenic bacterial toxins
Liposomes containing lipids and polydiacetylene (PDA) are hybrid systems encompassing both a fluid phospholipid membrane and a polymer scaffold (PDA). However, the biophysical role of PDA in such liposomes is not well understood. In this report, we studied the effects of photopolymerization of PDA on the stability of lipid-PDA liposomes, and their sensitivity to selected purified toxins and bacterial supernatants, using a fluorescence assay. Of the three different types of liposomes with variable lipid chain lengths that were chosen, the degree of polymerization had a significant impact on the long-term stability, and response, to external microbial exotoxins secreted by pathogenic bacteria, namely, Staphylococcus aureus and Pseudomonas aeruginosa. The degree of polymerization of TCDA played an important role in lipid-chain-length-dependent stabilization of lipid-PDA liposomes, as well as in their response to bacterial toxins of S. aureus and P. aeruginosa.</p
Vaccinia Virus Interactions with the Cell Membrane Studied by New Chromatic Vesicle and Cell Sensor Assays
The potential danger of cross-species viral infection points to the significance of understanding the contributions of nonspecific membrane interactions with the viral envelope compared to receptor-mediated uptake as a factor in virus internalization and infection. We present a detailed investigation of the interactions of vaccinia virus particles with lipid bilayers and with epithelial cell membranes using newly developed chromatic biomimetic membrane assays. This analytical platform comprises vesicular particles containing lipids interspersed within reporter polymer units that emit intense fluorescence following viral interactions with the lipid domains. The chromatic vesicles were employed as membrane models in cell-free solutions and were also incorporated into the membranes of epithelial cells, thereby functioning as localized membrane sensors on the cell surface. These experiments provide important insight into membrane interactions with and fusion of virions and the kinetic profiles of these processes. In particular, the data emphasize the significance of cholesterol/sphingomyelin domains (lipid rafts) as a crucial factor promoting bilayer insertion of the viral particles. Our analysis of virus interactions with polymer-labeled living cells exposed the significant role of the epidermal growth factor receptor in vaccinia virus infectivity; however, the data also demonstrated the existence of additional non-receptor-mediated mechanisms contributing to attachment of the virus to the cell surface and its internalization
Membrane interactions of ionic liquids: Possible determinants for biological activity and toxicity
Ionic liquids (ILs) are a class of diverse organic salts with relatively low melting points (below 100 \ub0C) which have attracted considerable interest as a promising \u201cgreen\u201d substitute for organic solvents. The broad solvation properties of ILs and their high solubility in water, however, present health risks, in particular since it was shown that many ILs exhibit cytotoxic properties. In this context, interactions of ILs with the cellular membrane are believed to constitute a primary culprit for toxicity. We present a comprehensive biophysical and microscopy study of membrane interactions of a series of ILs having different side-chain compositions and lengths, and cationic head-group structures and orientations. The experimental data reveal that the ILs studied exhibit distinct mechanisms of membrane binding, insertion, and disruption which could be correlated with their biological activities. The results indicate, in particular, that both the side chain composition and particularly the head-groups of ILs constitute determinants for membrane activity and consequent cell toxicity. This work suggests that tuning membrane interactions of ILs should be an important factor for designing future compounds with benign environmental impact
- …