1,780 research outputs found

    Development of improved adhesives for use at cryogenic temperatures to minus423 deg F Final summary report, 11 Jul. 1963 - 31 Aug. 1965

    Get PDF
    Improved polyurethane and epoxy resins for use as adhesives at cryogenic temperature

    Finite-Field Ground State of the S=1 Antiferromagnetic-Ferromagnetic Bond-Alternating Chain

    Full text link
    We investigate the finite-field ground state of the S=1 antiferromagnetic-ferromagnetic bond-alternating chain described by the Hamiltonian {\calH}=\sum\nolimits_{\ell}\bigl\{\vecS_{2\ell-1}\cdot\vecS_{2\ell} +J\vecS_{2\ell}\cdot\vecS_{2\ell+1}\bigr\} +D\sum\nolimits_{\ell} \bigl(S_{\ell}^z)^2 -H\textstyle\sum\nolimits_\ell S_\ell^z, where \hbox{J≤0J\leq0} and \hbox{−∞<D<∞-\infty<D<\infty}. We find that two kinds of magnetization plateaux at a half of the saturation magnetization, the 1/2-plateaux, appear in the ground-state magnetization curve; one of them is of the Haldane type and the other is of the large-DD-type. We determine the 1/2-plateau phase diagram on the DD versus JJ plane, applying the twisted-boundary-condition level spectroscopy methods developed by Kitazawa and Nomura. We also calculate the ground-state magnetization curves and the magnetization phase diagrams by means of the density-matrix renormalization-group method

    Fermionic zero-modes in type II fivebrane backgrounds

    Get PDF
    The explicit form of the fermionic zero-modes in the fivebrane backgrounds of type IIA and IIB supergravity theories is investigated. In type IIA fivebrane background there are four zero-modes of gravitinos and dilatinos. In type IIB fivebrane background four zero-modes of dilatinos and no zero-modes of gravitinos are found. These zero-modes indicate the four-fermion condensates which have been suggested in a calculation of the tension of the D-brane in fivebrane backgrounds.Comment: 10 page

    A closer look at string resonances in dijet events at the LHC

    Full text link
    The first string excited state can be observed as a resonance in dijet invariant mass distributions at the LHC, if the scenario of low-scale string with large extra dimensions is realized. A distinguished property of the dijet resonance by string excited states from that the other "new physics" is that many almost degenerate states with various spin compose a single resonance structure. It is examined that how we can obtain evidences of low-scale string models through the analysis of angular distributions of dijet events at the LHC. Some string resonance states of color singlet can obtain large mass shifts through the open string one-loop effect, or through the mixing with closed string states, and the shape of resonance structure can be distorted. Although the distortion is not very large (10% for the mass squared), it might be able to observe the effect at the LHC, if gluon jets and quark jets could be distinguished in a certain level of efficiency.Comment: 12 pages, 8 figure

    Graviton Propagators on Fuzzy G/H

    Full text link
    We describe closed string modes by open Wilson lines in noncommutative (NC) gauge theories on compact fuzzy G/H in IIB matrix model. In this construction the world sheet cut-off is related to the spacetime cut-off since the string bit of the symmetric traced Wilson line carries the minimum momentum on G/H. We show that the two point correlation functions of graviton type Wilson lines in 4 dimensional NC gauge theories behave as 1/(momentum)^2. This result suggests that graviton is localized on D3-brane, so we can naturally interpret D3-branes as our universe. Our result is not limited to D3-brane system, and we generalize our analysis to other dimensions and even to any topology of D-brane worldvolume within fuzzy G/H.Comment: 22 pages, 1 figure. minor correction

    R-mediation of Dynamical Supersymmetry Breaking

    Get PDF
    We propose a simple scenario of the dynamical supersymmetry breaking in four dimensional supergravity theories. The supersymmetry breaking sector is assumed to be completely separated as a sequestered sector from the visible sector, except for the communication by the gravity and U(1)_R gauge interactions, and the supersymmetry breaking is mediated by the superconformal anomaly and U(1)_R gauge interaction. Supersymmetry is dynamically broken by the interplay between the non-perturbative effect of the gauge interaction and Fayet-Iliopoulos D-term of U(1)_R which necessarily exists in supergravity theories with gauged U(1)_R symmetry. We construct an explicit model which gives phenomenologically acceptable mass spectrum of superpartners with vanishing (or very small) cosmological constant.Comment: 12 pages, to be published in Phys. Rev.

    First study of B→πB \to \pi semileptonic decay form factors using NRQCD

    Full text link
    We present a quenched calculation of the form factors of the semileptonic weak decay B→πlνˉB \to \pi l \bar{\nu} with O(1/mQ)O(1/m_Q) NRQCD heavy quark and Wilson light quark on a 163×3216^3 \times 32 lattice at β=5.8\beta=5.8. The form factors are evaluated at six heavy quark masses, in the range of mQ∼1.5−8m_Q \sim 1.5-8 GeV. 1/mQ1/m_Q dependence of matrix elements are investigated and compared with HQET predictions. We observe clear signal for the form factors near qmax2q^2_{max}, even at the bb-quark mass range. f0(qmax2)f^0(q^2_{max}) is compared with fB/fπf_B/f_{\pi} based on the soft pion theorem and significant difference is observed.Comment: 3 pages, 5 ps figures, uses espcrc2.sty and epsf.sty, Talk presented at Lattice'9

    Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb

    Full text link
    Infrared reflectivity measurements of CeSb under multi-extreme conditions (low temperatures, high pressures and high magnetic fields) were performed. A pseudo gap structure, which originates from the magnetic band folding effect, responsible for the large enhancement in the electrical resistivity in the single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo gap changes to that of a metallic structure with increasing magnetic field strength and increasing temperature. This change is the result of the magnetic phase transition from the AF-1 phase to other phases as a function of the magnetic field strength and temperature. This result is the first optical observation of the formation and collapse of a pseudo gap under multi-extreme conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
    • …
    corecore