3,135 research outputs found
NA62 Charged Particle Hodoscope. Design and performance in 2016 run
The NA62 experiment at CERN SPS is aimed to measure the branching ratio of
the ultra-rare decay with 10\% accuracy.
The experiment operates with a 75 GeV/c high intensity (750 MHz) secondary
beam. A new detector, named Charged Particle Hodoscope (CHOD), designed to
produce an input signal to the L0 trigger processor for events with charged
particles produced in kaon decays, has been assembled, installed, integrated in
NA62 Data Acquisition System (DAQ) and commissioned in 2016. During the whole
2016 run the detector has been in continuous operation. Design and performance
features of the detector are presented.Comment: INSTR2017 conferenc
Elementary derivation of Spitzer's asymptotic law for Brownian windings and some of its physical applications
A simple derivation of Spitzer'z asymptotic law for Brownian windings
[Trans.Am.Math.Soc.87,187 (1958)]is presented along with its generalizations
>.These include the cases of planar Brownian walks interacting with a single
puncture and Brownian walks on a single truncated cone with variable conical
angle interacting with the truncated conical tip.Such situations are typical in
the theories of quantum Hall effect and 2+1 quantum gravity, respectively .They
also have some applications in polymer physic
Conformational transformations induced by the charge-curvature interaction at finite temperature
The role of thermal fluctuations on the conformational dynamics of a single
closed filament is studied. It is shown that, due to the interaction between
charges and bending degrees of freedom, initially circular aggregates may
undergo transformation to polygonal shape. The transition occurs both in the
case of hardening and softening charge-bending interaction. In the former case
the charge and curvature are smoothly distributed along the chain while in the
latter spontaneous kink formation is initiated. The transition to a
non-circular conformation is analogous to the phase transition of the second
kind.Comment: 23 pages (Latex), 10 figures (Postscript), 2 biblio file (bib-file
and bbl-file
Veneziano Amplitudes, Spin Chains and String Models
In a series of recently published papers we reanalyzed the existing
treatments of Veneziano and Veneziano-like amplitudes and the models associated
with these amplitudes. In this work we demonstrate that the already obtained
new partition function for these amplitudes can be exactly mapped into that for
the Polychronakos-Frahm (P-F) spin chain model. This observation allows us to
recover many of the existing string-theoretic models, including the most recent
ones.Comment: 38 page
Domain-Oriented Reduction of Rule-Based Network Models
The coupling of membrane-bound receptors to transcriptional regulators and other effector functions is mediated by multi-domain proteins that form complex assemblies. The modularity of protein interactions lends itself to a rule-based description, in which species and reactions are generated by rules that encode the necessary context for an interaction to occur, but also can produce a combinatorial explosion in the number of chemical species that make up the signaling network. We have shown previously that exact network reduction can be achieved using hierarchical control relationships between sites/domains on proteins to dissect multi-domain proteins into sets of non-interacting sites, allowing the replacement of each “full” (progenitor) protein with a set of derived auxiliary (offspring) proteins. The description of a network in terms of auxiliary proteins that have fewer sites than progenitor proteins often greatly reduces network size. We describe here a method for automating domain-oriented model reduction and its implementation as a module in the BioNetGen modeling package. It takes as input a standard BioNetGen model and automatically performs the following steps: 1) detecting the hierarchical control relationships between sites; 2) building up the auxiliary proteins; 3) generating a raw reduced model; and 4) cleaning up the raw model to provide the correct mass balance for each chemical species in the reduced network. We tested the performance of this module on models representing portions of growth factor receptor and immunoreceptor-mediated signaling networks, and confirmed its ability to reduce the model size and simulation cost by at least one or two orders of magnitude. Limitations of the current algorithm include the inability to reduce models based on implicit site dependencies or heterodimerization, and loss of accuracy when dynamics are computed stochastically
One-vortex moduli space and Ricci flow
The metric on the moduli space of one abelian Higgs vortex on a surface has a
natural geometrical evolution as the Bradlow parameter, which determines the
vortex size, varies. It is shown by various arguments, and by calculations in
special cases, that this geometrical flow has many similarities to Ricci flow.Comment: 20 page
Guest charges in an electrolyte: renormalized charge, long- and short-distance behavior of the electric potential and density profile
We complement a recent exact study by L. Samaj on the properties of a guest
charge immersed in a two-dimensional electrolyte with charges . In
particular, we are interested in the behavior of the density profiles and
electric potential created by the charge and the electrolyte, and in the
determination of the renormalized charge which is obtained from the
long-distance asymptotics of the electric potential. In Samaj's previous work,
exact results for arbitrary coulombic coupling were obtained for a
system where all the charges are points, provided and .
Here, we first focus on the mean field situation which we believe describes
correctly the limit but large. In this limit we can
study the case when the guest charge is a hard disk and its charge is above the
collapse value . We compare our results for the renormalized charge
with the exact predictions and we test on a solid ground some conjectures of
the previous study. Our study shows that the exact formulas obtained by Samaj
for the renormalized charge are not valid for , contrary to a
hypothesis put forward by Samaj. We also determine the short-distance
asymptotics of the density profiles of the coions and counterions near the
guest charge, for arbitrary coulombic coupling. We show that the coion density
profile exhibit a change of behavior if the guest charge becomes large enough
(). This is interpreted as a first step of the counterion
condensation (for large coulombic coupling), the second step taking place at
the usual Manning--Oosawa threshold
Dynamic mechanical response of polymer networks
The dynamic-mechanical response of flexible polymer networks is studied in
the framework of tube model, in the limit of small affine deformations, using
the approach based on Rayleighian dissipation function. The dynamic complex
modulus G* is calculated from the analysis of a network strand relaxation to
the new equilibrium conformation around the distorted primitive path. Chain
equilibration is achieved via a sliding motion of polymer segments along the
tube, eliminating the inhomogeneity of the polymer density caused by the
deformation. The characteristic relaxation time of this motion separates
the low-frequency limit of the complex modulus from the high-frequency one,
where the main role is played by chain entanglements, analogous to the rubber
plateau in melts. The dependence of storage and loss moduli, G' and G'', on
crosslink and entanglement densities gives an interpolation between polymer
melts and crosslinked networks. We discuss the experimental implications of the
rather short relaxation time and the slow square-root variation of the moduli
and the loss factor tan at higher frequencies.Comment: Journal of Chemical Physics (Oct-2000); Lates, 4 EPS figures include
Quantifying gene network connectivity in silico: Scalability and accuracy of a modular approach
Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene\u27s mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated
Bimodal distribution function of a 3d wormlike chain with a fixed orientation of one end
We study the distribution function of the three dimensional wormlike chain
with a fixed orientation of one chain end using the exact representation of the
distribution function in terms of the Green's function of the quantum rigid
rotator in a homogeneous external field. The transverse 1d distribution
function of the free chain end displays a bimodal shape in the intermediate
range of the chain lengths (). We present also
analytical results for short and long chains, which are in complete agreement
with the results of previous studies obtained using different methods.Comment: 6 pages, 3 figure
- …
