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Abstract 

The coupling of membrane-bound receptors to transcriptional regulators and other 

effector functions is mediated by multi-domain proteins that form complex assemblies. The 

modularity of protein interactions lends itself to a rule-based description, in which species and 

reactions are generated by rules that encode the necessary context for an interaction to occur, but 

also can produce a combinatorial explosion in the number of chemical species that make up the 

signaling network.  We have shown previously that exact network reduction can be achieved 

using hierarchical control relationships between sites/domains on proteins to dissect multi-

domain proteins into sets of non-interacting sites, allowing the replacement of  each “full” 

(progenitor) protein with a set of derived auxiliary (offspring) proteins. The description of a 

network in terms of auxiliary proteins that have fewer sites than progenitor proteins often greatly 

reduces network size. We describe here a method for automating domain-oriented model 

reduction and its implementation as a module in the BioNetGen modeling package. It takes as 

input a standard BioNetGen model and automatically performs the following steps: 1) detecting 

the hierarchical control relationships between sites; 2) building up the auxiliary proteins; 3) 

generating a raw reduced model; and 4) cleaning up the raw model to provide the correct mass 

balance for each chemical species in the reduced network. We tested the performance of this 

module on models representing portions of growth factor receptor and immunoreceptor-mediated 

signaling networks, and confirmed its ability to reduce the model size and simulation cost by at 

least one or two orders of magnitude. Limitations of the current algorithm include the inability to 

reduce models based on implicit site dependencies or heterodimerization, and loss of accuracy 

when dynamics are computed stochastically. 
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1 Introduction 

1.1 Combinatorial complexity of cell signaling networks 

Many signaling proteins, such as membrane receptors and their cytoplasmic adapters, have 

multi-domain structures and display multiple docking sites that engage several downstream 

signaling proteins, thereby serving as scaffolds [1-6]. Each domain can assume multiple states, 

for instance, a docking site on a scaffold protein can be unphosphorylated and free, 

phosphorylated and free, phosphorylated and bound to a partner, which in turn can be 

unphosphorylated and free, or phosphorylated and bound to another protein or lipid, and so on. 

In general, the functional states of such multi-domain proteins will depend on the states of all 

domains of the protein. We define a microscopic model as one that explicitly represents all 

possible states of multi-domain proteins and the feasible reactions among these states. 

As an example, we consider a cell-surface receptor of the receptor tyrosine kinase (RTK) 

family. RTK’s have a modular structure that can be divided into an extracellular region, which 

contains the ligand-binding and receptor dimerization sites, and a cytoplasmic region, which has 

tyrosine kinase activity and contains phosphorylation sites with tyrosine, serine and threonine 

residues (see Fig. 1). Ligand binding activates RTKs by inducing either dimer formation (e.g., 

epidermal growth factor (EGF) receptor) or an allosteric transition (e.g., insulin receptor, IR, and 

insulin-like growth factor receptor, IGF-1R) [7, 8]. These structural transitions result in the 

activation of intrinsic tyrosine kinase activity and subsequent autophosphorylation, which 

initiates signal processing through receptor interactions with a battery of adapter and target 

proteins containing characteristic protein domains, such as Src homology (SH2 and SH3), 

phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains (reviewed in [7, 9, 10]). 

These proteins, in turn, can also possess multiple domains and sites that can be phosphorylated 

by the receptor and dephosphorylated by phosphatases.  

Binding between two signal-transduction proteins often requires one of the two interacting 

sites to be phosphorylated, which imposes an ordering on phosphorylation and binding events. 

For proteins that have multiple binding sites, however, binding of other proteins at different sites 

may be independent (i.e., no interaction among binding partners) or cooperative (i.e., binding 

partners interact either positively or negatively).  Ordering is imposed on binding interactions at 

two different sites only if the cooperativity is complete, i.e. one site must be occupied for binding 

to occur at the second site or one site must not be occupied for binding to occur at a second site.  
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Thus, in most cases the presence of multiple binding sites gives rise to many different 

combinations of protein aggregates that can have a large number of different functional states.  In 

general, the number of states of an aggregate grows in a multiplicative fashion with the number 

of possible states of each site, leading to a combinatorial explosion in the total number of 

different chemical species (molecules or complexes of molecules in which each molecule is in 

distinct state) that must be included within a microscopic model.  In the conventional approach to 

modeling chemical kinetics [11], in which the concentration of each species is described by a 

separate ordinary differential equation (ODE), combinatorial complexity may generate such a 

large set of equations that simulation becomes infeasible on even the most powerful computers. 

The problem arises in models describing only the initial steps following ligand-receptor binding, 

which can lead to hundreds or thousands of possible species [12-15].  Extended models of 

growth factor receptors and their initial scaffolding partners can produce networks of 10
8
 species 

[15], 10
23

 species [16], and beyond, rendering the conventional approach useless for such 

microscopic models. 

 

1.2 Domain-oriented model reduction  

One way to avoid the problem of combinatorial explosion is model reduction. It has recently 

been shown that by introducing a set of variables that tracks only subsets of the possible 

combinations of the domain/site states rather than the full set of possible complexes, it is possible 

to derive a reduced set of dynamical equations for many signaling networks [1, 2, 4, 15, 17]. This 

domain-oriented approach to model reduction is based upon the mutual independence and 

hierarchical control relationships between different sites of each protein in a network, which goes 

as follows. If the rates of transitions between the states of site qi on a protein Q depend upon the 

state of another site qj on the same protein Q, then site qi is termed dependent on site qj, and, 

respectively, site qj is referred to as a controlling site for qi [1]. The independence of sites means 

that the time course of reactions involving some sites may be decoupled from the reactions 

occurring at other sites. For each scaffold protein, called a progenitor, a set of auxiliary 

(offspring) proteins can be introduced, each of which contains a subset of the progenitor 

protein’s sites. Previous work has shown that the sites contained by the auxiliary proteins can be 

chosen so that each reacts independently of the other auxiliary proteins. The concentration of an 

auxiliary protein with sites q1…qk in states s1…sk is defined to be the sum of concentrations of 
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all forms of the scaffold protein in which each of the k sites has the same state as in the auxiliary 

protein. The concentrations of the auxiliary proteins are thus macroscopic (macro) variables that 

are comprised of sums over the concentrations of microscopic (micro) species in the system. In 

contrast to the number of micro variables, which is a multiplicative function of the number of 

states of each site, the number of macro variables is additive in the number of states of each 

auxiliary protein. If a protein contains multiple independent sites, the number of macro variables 

describing the protein’s dynamics can be much smaller than the number of micro states of the 

protein. 

The domain-oriented approach thus provides a macroscopic description of network dynamics 

in that it does not follow the fate of all species and reactions that are generated by scaffold 

signaling, thereby greatly reducing the number of states and equations required for a quantitative 

analysis of the system behavior. The ODE’s obtained by the transformation to macro variables 

are exact in terms of auxiliary proteins. Kinetic Monte Carlo methods, such as the Gillespie 

algorithm [2], can also be used to provide an exact stochastic description of the dynamics in 

terms of the macro variables, but, as we note below in Sec. 2.4 require slight modification to 

avoid loss of accuracy. The transformation to macro variables entails some loss of information 

about correlations between independent sites of a protein, but such correlations typically cannot 

be measured by available experimental techniques, most of which detect binding or 

phosphorylation at either the whole protein or the single site level.  If such data is available, the 

modeler may choose to define observables that track multiple sites within a protein, although this 

will lessen the extent to which the model can be reduced.  Multi-site observables may also be 

approximately reconstructed from single-site observables [1, 2, 4].  In practice, single-site macro 

variables are frequently sufficient for making direct comparisons with experimental 

measurements [18].  

The domain-oriented approach to model reduction can decrease the number of variables by 

orders of magnitude and thus promises to be a powerful tool for the development of realistic 

models of intracellular signaling.  Existing methods [1, 2, 4, 15, 17], however, are not automated 

and require the modeler to define manually the set of auxiliary proteins and the rules for their 

interaction.  For a highly interconnected network, this requires considerable modeling experience 

and effort and may obscure the basic structure of the model.  Moreover, the procedure has not 

yet been formalized algorithmically in the previous works that describe the principle of domain-
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oriented reduction.  In this paper, we present an algorithm for domain-oriented model reduction, 

which has been implemented as module in the freely-available BioNetGen modeling package 

[19]. 

 

 

1.3 Rule-based model description 

Recent work has shown that automated generation of domain-oriented models can be 

accomplished through the use of a rule-based model description. Several software packages, such 

as Moleculizer [20],  StochSim [21-23], BioNetGen [14, 18, 19, 24], enable the develop of rule-

based models based on a multi-state description of proteins and other signaling molecules and 

rules that transform these molecules according to specified properties of the reactants. Rules 

represent a generalization of reactions, and a single rule may be applied to many different species 

to generate new reactions and new species as products.  In order to simulate a rule-based model 

as a set of ODEs, rules are applied iteratively to a seed set of species to generate all of the 

possible reactions and species in the network [24].  The cost of network generation, as well as 

subsequent ODE integration, can be become prohibitive for models exhibiting a high degree of 

combinatorial complexity. The goal of the current algorithm is to reduce the costs of network 

generation and simulation by replacing each multi-state progenitor protein in the model with a 

set of derived auxiliary (offspring) proteins that group sets of independently-acting sites.  

Application of the transformed rules to the set of auxiliary proteins will then generate a 

transformed network that is smaller in size but no less accurate for predicting the time evolution 

of the macro variables. 

In the present paper, we will describe our domain-oriented reduction algorithm and examples 

using the specific syntax of the BioNetGen Language (BNGL), which is closely related to the κ-

calculus of Danos and co-workers [16, 25], although the method could be applied to any domain-

oriented model specification.  We have also implemented the algorithm as a module of 

BioNetGen, which is freely available from http://bionetgen.org.   A brief overview of BNGL is 

provided in the Appendix with further details provided in [19]. 

 

2 Results  
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Domain-oriented reduction attempts to construct the smallest possible model of the network 

given the molecules and interactions specified by the user that still allows correct calculation for 

the specified observables. Since the domain-oriented reduction method relies on control 

relationships between protein sites, the module should perform at least two major actions: 

(1) Construct auxiliary proteins by detecting control relationships between progenitor 

protein sites.  

(2) Generate reactions and observables for the reduced network that preserve mass 

balance.   

 

2.1 Automatic construction of auxiliary proteins 

The algorithm begins by partitioning the sites on each molecule into (possibly 

overlapping) sets based on the control hierarchy. Redundant sets are then removed, and auxiliary 

proteins based on the controlling sets are introduced.  These three steps are carried out as 

follows: 

(1) Initial determination of controlling sets. The aim of this step is to determine the 

controlling set for each site on each protein according to the reaction rules and observable 

patterns specified in the bngl-file. For each protein Q with n sites called q1, …, qn, we analyze 

the reaction rules as follows.  If there is a reaction rule in which site q1 of Q is present together 

with another site qk and the state of site q1 changes while the state of site qk does not, then site qk 

is a controlling site for q1. If q1 and qk change their states simultaneously in a reaction rule, or if 

q1 and qk are mentioned simultaneously in an observable, then sites q1 and qk are mutually 

dependent, which means that qk is considered a controlling site of q1 and vice versa.  Sites with 

identical names in the same molecule are also assumed to be mutually dependent in order to 

prevent dissection of proteins that can serve as a bridge for the formation of dimers. After 

finding all sites that control site q1, we repeat this procedure iteratively for each of the 

controlling sites found at the previous iteration until no new controlling sites can be found.  The 

set that combines the site q1 (by the definition, any site controls itself) and all direct or indirect 

controlling sites is termed a controlling set Z(Q,q1) = (q1,…,qs) for site q1 on Q. Likewise, the 

sets Z(Q,qi), i =2,…, n, are determined for each remaining site on the protein Q. All controlling 

sets Z(Q,qi) are subsets of the full set (q1,…,qn)  of sites for protein Q. The resulting sets Z(Q,qi) 

do not depend on the order of appearance of any protein, site, reaction rule, or observable in the 
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bngl-file, because the process terminates only after all possible control relationships have been 

found. 

(2) Refinement of controlling sets. The aim of the refinement step is to eliminate 

redundancy among the sets of controlling sets that are used to define the auxiliary proteins. 

Controlling sets for different sites may overlap, and if one controlling set is a subset of another it 

is removed from the set of controlling sets for a given progenitor, because an auxiliary protein 

defined from this redundant set would contain no unique information.  The controlling sets 

remaining after this refinement procedure are renumbered and designated as (Z1(Q), …, Zm(Q), 

m ≤ n). Note that after renumbering, we lose any information on the relationships between 

indexes 1, .., m used for numbering sets Zj and particular sites qi on the protein Q. The refined set 

of controlling sets is optimal as the starting point for auxiliary protein definition because it is the 

smallest set of controlling sets for the sites of Q that contains all sites of Q. 

(3) Auxiliary protein definition. For each set Zj(Q), j = 1,…, m, we define the macro 

variable [Qj(Zj(Q))], which is the sum of the concentration of protein Q(q1, …, qn) over all 

possible states of the sites that are not included in set Zj(Q). For example, if Zj(Q) contains all 

sites (q1,…,qn) except qx, qy, qz, the corresponding variable is 

[Qj(Zj(Q))] ∑∑∑
= = =

=
X

q

Y

q

Z

q

nzyx

x y z

qqqqqQ
0 0 0

1 )],...,,...,,....,,...,([ , where indices qx, qy and qz run over all 

the possible states (denoted form 0 to Z, Y and Z, respectively) of the sites qx, qy, qz, and 

[ ),...,,...,,....,,...,( 1 nzyx qqqqqQ ] is the concentration of protein Q in the state 

),...,,...,,....,,...,( 1 nzyx qqqqq . Hence, the macro variable [Qj] depends on the states of the sites 

that belong to Zj(Q) but is independent of all other sites that do not belong to Zj(Q). To 

transform the rule set defining the model from the micro variables into the macro variables, we 

define an auxiliary protein Qj for each macro variable [Qj]. The auxiliary protein Qj has a set of 

sites (Zj(Q)), which is a subset of the domains on the progenitor protein Q. In physical terms, the 

multi-state progenitor protein is replaced by a number of auxiliary proteins, each with a smaller 

number of sites.   

We can illustrate this procedure for the simple example of proteins R and B shown in 

Fig. 1.  Analysis of the reaction rules that describe binding and phosphorylation reactions that 

involve R and B (see Supplement 1) shows that on R phosphorylation residues, r3 and r4, depend 
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on the ligand-binding site, r1, as well as on the dimerization site, r2.  Likewise, on the scaffolding 

adapter protein B, the RTK-binding site b1 controls the phosphorylation residues b2 and b3.  

Controlling sets of the sites on R and B are determined by the algorithm described above as 

follows, Z(R,r1) = {r1}, Z(R,r2) = {r1,r2}, Z(R,r3) = {r1,r2,r3}, Z(R,r4) = {r1,r2,r4}, Z(B,b1) = 

{b1}, Z(B,b2) = {b1,b2}, Z(B,b3) = {b1,b3}. The deletion of redundant sets results in the following 

remaining sets, Z1(R) = {r1,r2,r3}, Z2(R) = {r1,r2,r4}, Z1(B) = {b1,b2}, Z2(B) = {b1,b3}.  

 Although it may first appear counterintuitive, the extent of model compression increases 

with the number of the auxiliary proteins derived from each protein Q, since the total number of 

micro variables is a product of the number of states of each site on Q, whereas the number of 

macro variables of is a sum of the number of states of each auxiliary protein Qj.  In the extreme 

case of interactions among all sites on the scaffold, the above procedure results in a single 

controlling set that contains every site on the protein. The resulting single auxiliary protein 

),...,( 11 nqqQQ =  is then the same as the progenitor protein, and no model reduction occurs [26]. 

 

 2.2 Generation of reactions and observables that preserve mass-balance 

Sites found on more than one auxiliary protein derived from the same progenitor protein 

are termed shared sites.  If a particular site is found on only one auxiliary protein, this site is 

referred to as a unique site.  For instance, sites r1 and r2 on the RTK R and the b1 on the adapter 

B in Fig. 1 are shared, whereas r3 and r4, b2 and b3 are unique.  The model reduction algorithm 

must ensure that proteins that bind to shared sites will not be counted more than once in mass-

balance equations.  Otherwise, the introduction of n auxiliary proteins containing the same 

shared site leads to an n-fold increase in the concentration of the shared site and produces 

incorrect binding kinetics.  As shown previously [1, 2], the correct kinetics is obtained if only 

one of the binding reactions involving the shared site consumes or produces the binding partner. 

The auxiliary protein involved in this reaction is termed balance-accountable, whereas the 

remaining auxiliary proteins are termed balance-unaccountable.  The choice of the balance-

accountable auxiliary protein among the auxiliary proteins containing the shared site is arbitrary 

[1].  A detailed example that illustrates how this may be done manually in BioNetGen scripts 

using non-consumption tags and a manually-specified macro reduction is provided in 

Supplement 2. 
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This procedure, however, is insufficient when both reactants in a binding reaction contain 

shared sites. This is an important case to consider because many, if not most, RTKs dimerize.  

For this reason the current domain-oriented reduction module for BioNetGen performs mass 

balance corrections in a different way that does not involve the use of non-consumption tags in 

reaction rules, but rather applies corrections to the network of species and reactions generated by 

rule application, i.e., at the level of the net-file rather than at the level of the bngl-file (see 

Appendix).  

A detailed description of the implemented procedure is provided in Supplement 3, but the 

essential elements comprise steps 4(a)-4(c) in the algorithm summary provided below. 

(1) Analysis of reaction rules and patterns of the observables to determine the site 

dependence hierarchy for each protein, according to the algorithm described in 

Sec. 2.1 

(2) Replacement, where applicable, of progenitor proteins with the sets of auxiliary 

proteins, according to the algorithm described in Sec. 2.1. 

(3) Generation of “raw” or uncorrected network of species and reactions 

(accomplished in BioNetGen by the generate_network command).  

(4) Correction of the raw macro-network model. 

a. Complexes that contain two or more different auxiliary proteins derived 

from the same progenitor protein overload the macro-network with extra 

species. These species lead to the multiplication of the concentrations of 

unique sites, which leads to spurious effects. To eliminate this problem, all 

complexes that contain different auxiliary proteins derived from the same 

progenitor protein are removed from the list of species in the network and 

from the list of species corresponding to each observable. Reactions 

involving the removed species are also removed. 

b. To provide the correct mass balance for the partners of the shared sites, the 

module disables consumption or production of all species that bind to or 

dissociate from shared sites of balance-unaccountable auxiliary proteins.  

The current version of the domain-oriented reduction module treats homo-

dimerization as an exception to this rule, but does not handle the case of 

binding between shared sites (either direct or mediated via other proteins) of 



 11 

different progenitor proteins (see Sec. 2.4 and Supplement 5 for more 

detail).  

c. Observables are corrected to eliminate species that contain balance-

unaccountable auxiliary proteins if their contribution to the observable has 

been also taken into account by species that contain balance-accountable 

proteins.  

A flowchart of the complete algorithm for domain-oriented model reduction that is implemented 

as a BioNetGen module is shown in Fig. 2. 

 

2.3 Numerical examples  

Numerical experiments illustrate the performance of automated model reduction methods for 

a set of several RTK signaling networks, including an EGFR-like network, in which ligand 

binding induces aggregation through receptor-receptor interactions [17, 27, 28] (see Fig. 1 and 

Supplement 1), and an FcεRI-like network (see Supplement 4), in which receptor aggregation is 

mediated by a bivalent ligand [29].  There are two versions of both models, one with two 

receptor tyrosine residues, r3 and r4, which upon phosphorylation can bind the adapter proteins, 

A and B, respectively (see Fig. 1), and one with an additional tyrosine, r3a, which also can bind A 

upon phosphorylation. 

Table 1 shows the extent of model reduction achieved by the domain-oriented method. 

Although the models presented here are small in scope, including only four proteins and a few 

reaction rules, the reduction method decreases the number of species and reactions, as well as 

time required for model generation, by orders of magnitude. Because even the reduced models 

contain tens, if not hundreds of species, and hundreds of reactions, manual (non-automatic) 

preparation of the reduced models seems impractical. The relative difference between results for 

the full and reduced models for the computed values of observables is less than 10
-8 

(the 

tolerance limit for the ODE integration), which confirms that the algorithm performs correctly 

and does introduce significant numerical errors into the integration (data not shown).  

 

2.4 Limitations 

Although these examples confirm the ability of the module to reduce the models by at 

least one or two orders of magnitude, the algorithm has limitations, which are summarized here 
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and described in detail in Supplement 5, where future extensions of the algorithm to address 

these limitations are also proposed. For each of the six cases discussed below, the possibility 

exists that current module may either fail to reduce a reducible model or may produce an 

incorrect reduced model (i.e., one whose simulation produces results that differ from those 

produced by the full model) if the model possesses certain features that trigger limitations in the 

current algorithm. To help users of the module avoid these outcomes, we provide tips, 

summarized in Table 2, for recognizing problematic model elements and adjusting module 

control parameters to avoid reducing parts of a model that cannot be correctly handled. We 

strongly suggest that, wherever possible, simulation results from reduced models obtained by the 

macro module be compared with results of an exact simulation to verify that the model has been 

correctly reduced. Although the limitations described here and elaborated in Supplements 3 and 

5 represent all limitations in the current algorithm of which we are presently aware, we do not 

have a proof that these are exhaustive, and it is thus possible that unforeseen instances of 

incorrect model reduction may occur. 

1.  Identical site names.  As mentioned in Section 2.1, the module assumes mutual 

dependence among sites with identical names.  Although this feature is necessary for the proper 

treatment of “bridging” events, in which two monomers are linked by a bivalent ligand, it also 

decreases the extent of model reduction when such bridging is not necessary. In the latter case, 

the user is advised to use unique names for each site on a molecule. 

2.  Implicit bonds.  In the current algorithm, each control relationship is detected using a 

single reaction rule that is taken separately from other rules.  As a result, the algorithm cannot 

identify control relationships arising from implicit binding relationships, such as in the BNGL 

expression A.B, which requires that proteins A and B be in the same complex but does not 

specify the mechanism of binding.  This limitation can be addressed at the user level by avoiding 

implicit dependencies in the model specification, although cases arise when this is not possible 

(see, e.g. [30]).  As detailed in Sec. 3 of Supplement 5, iterative processing of the rules could be 

used to resolve these control relationships. 

3.  Binding between shared and unique sites of the same auxiliary protein.  The current 

module incorrectly reduces models generating complexes with chains or loops of chemical bonds 

that link a unique site of an auxiliary protein to a shared site of the same protein or another 

instance of the same protein type.  The resulting reduced models have incorrect mass balances 
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leading to incorrect simulation results for some observables. Automated handling of such cases 

would also require iterative processing of the rules.  To avoid the possibility of an error in model 

reduction, the user is advised to validate results of reduced model against full model wherever 

possible.  If a discrepancy occurs, the user can inspect the species list for the occurrence of 

complexes that link shared and unique sites.  If such species are found, the user must manually 

disable macro-reduction of the involved protein using the –nored option (see more details in 

Sec. 3 of Supplement 5). 

4. Control relationships between sites on different proteins.  The algorithm presented 

here only utilizes hierarchical control relationships within a single protein.  However, for models 

in which the state of one protein in a complex affects the transformations between the states of 

another protein in the same complex, the use of only within-protein control relationships may 

give an incorrect reduced model.  An example involving ordered phosphorylation of an adapter 

protein is illustrated in Fig. S5.2, and a bngl-file for the model is given in Supplement 6.  The 

current implementation does not detect control relationships between sites of different proteins, 

and, if such relationships exist in a model, the user is also advised to disable domain-oriented 

reduction (–nored option). In addition, incorrect model reduction can be detected by comparing 

time courses of the reduced and exact models, as shown in Fig. S5.3. 

5. Binding between shared sites of different proteins.  The algorithm does not identify 

reductions when auxiliary proteins from different progenitor proteins bind to each other through 

shared sites.  This case is important because when multi-site signaling proteins can form dimers, 

formation of the dimer frequently modulates the activity of sites within each protein—a 

prominent example being the ErbB family of RTKs [31, 32].  Allowing association of the 

auxiliary proteins of one progenitor protein with the auxiliary proteins of a different progenitor 

leads to a proliferation in the number of heterodimers.  The resulting problem of generating the 

correct mass balances for the binding partners of the progenitor proteins is not solved by the 

simple trick that works in the case of homodimerziation, in which the complexes containing 

different auxiliary proteins of the same progenitor protein are simply removed from the model. 

The avoid the possibility of errors the user is advised to use the –nored option for the proteins 

that undergo heterodimerization.  

6. Stochastic simulations.  A final limitation that applies to the BioNetGen 

implementation but not to the reduction algorithm per se is that simulations using kinetic Monte 
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Carlo methods such as Gillespie’s algorithm [33] with the macro-reduced reaction network will 

not be exact unless reactions involving binding and dissociation of shared sites are properly 

correlated.  The problem arises because in a discrete-event simulation, every time a binding or 

dissociation event occurs involving a shared site, the event should apply to all of the shared sites 

of the same molecule. In the macro model each of these events will be governed by a separate 

reaction (albeit with the same rate) and these will fire independently in a stochastic simulation, 

which de-correlates the levels of shared site occupancy for the auxiliary proteins sharing the site. 

(This problem does not apply to the ODE equations because all the events occur at the same rate 

and thus give the same values of site occupancy.) To retain the correct site occupancies, one 

could apply correlated Monte Carlo sampling [34], in which one event is used to trigger a change 

in state of the shared site of all n auxiliary proteins. This has not been done for the stochastic 

simulation algorithm in BioNetGen, but could be easily encoded in models exported in the 

Systems Biology Markup Language (see Appendix). 

 

3 Discussion 

The multiplicity of scaffold proteins involved in RTK signaling networks, their sites and 

states of these sites results in a combinatorial explosion of the number of possible states that 

involved proteins and their complexes may have. The interactions present in signal transduction 

systems may easily imply networks of possible species and reactions that are too large to 

simulate using standard methods for chemical kinetics. Recently, advances in kinetic Monte 

Carlo methodology that use particle-based event-driven simulations to avoid explicit generation 

of species and reactions appear to have broken to bottleneck caused by combinatorial complexity 

[35, 36]. ODEs, however, afford both computational and analytical advantages over stochastic 

methods and therefore methods for limiting the size of the ODE system implied by a set of 

biochemical interactions will continue to be important.  

A central result of our previous theoretical studies is that for many signaling networks, a 

microscopic picture of all possible species may be substituted with a more compact model that 

describes the network in terms of experimentally detectable states of separate domains [1, 2, 4, 

17]. The key features that allow such domain-oriented reduction are hierarchical control 

relationships between sites on proteins involved in signaling networks. 



 15 

Based on these findings, we have developed a method for automatic domain-oriented 

reduction of signaling network models, which is implemented as a module in the software 

package BioNetGen. The reduction module takes a standard bngl-file as input and performs the 

following steps (see also Fig. 2). First, the module determines the control relationships between 

sites on protein molecules. Second, if possible, self-controlling subsets of sites are determined 

for each protein, and each reducible protein (progenitor protein) is substituted with a set of 

auxiliary proteins that have only the sites that belong to the self-controlling subsets. Third, the 

raw network model, which is described in terms of auxiliary proteins, is generated using 

BioNetGen. Finally, the raw model is corrected to provide correct mass balance for each species 

in the reduced model. 

The algorithm has been applied to several realistic examples involving aggregation of 

receptors with multiple binding and modification sites, and a high degree of model reduction was 

achieved, resulting in several orders of magnitude of in increased computational efficiency with 

no loss of accuracy (see Table 1). The method is fully automated, and the reduction module takes 

as input a standard BioNetGen input file including standard simulation commands (see Appendix 

and [19]). The only difference in output between a standard BioNetGen simulation and one run 

through the macro module is that species concentrations are reported only for the macro 

variables and not for the microscopic species. Time courses of observables generated by the full 

and reduced models will be identical, except in the cases noted in Sec. 2.4. Use of the module 

does not require the user to understand details of the algorithm, although the user is required to 

recognize the possible pitfalls described in Sec. 2.4 and in some cases to manually turn off 

reduction of problem proteins. Future work will focus on overcoming limitations to the 

applicability of the algorithm outlined in Sec. 2.4 and detailed in Supplement 5.   

Recently, a new model reduction technique based on modular analysis has been proposed 

that augments the domain-oriented approach used here, increasing the level of compression that 

can be attained at the cost of introducing some degree of error, which appears to be small for the 

cases examined so far [15].  At the present time, the method requires manual analysis and 

application, but its automation would appear to be a promising area for future development.   

  

4 Appendix: Overview of BioNetGen 



 16 

BioNetGen provides a flexible language for the description of protein structure and protein 

interactions called the BioNetGen language (BNGL) [19] . A model specification in the bngl-

file may consist of five required elements:  parameters, species (also called seed 

species), reaction rules, observables, and actions. Parameters specify the 

kinetic rate constants, total protein concentrations and other fixed numerical properties of the 

model. Species describe molecules (including their sites and states of these sites) that are present 

at the start of network generation. For example, the species P(s1,s2~pY)defines a protein 

named P, which has two sites named s1 and s2, and specifies that the site s1 is free, and the site s2 

is in the state named pY (a mnemonic for phosphotyrosine) and also free.  

Reaction rules list the rules for building the biochemical network. For example, the 

reversible rule  

 A(b) + B(a,c) <-> A(b!1).B(a!1,c) k_on, k_off   

describes the binding and dissociation of molecules A and B, where the first reactant may be any 

species that contains the protein A whose site b is free, and the second reactant may be any 

species that contains the protein B whose sites a and c are both free.  The product of these 

reactions contains proteins A and B bound via b-site on A and a-site on B, as indicated by the 

exclamation mark followed by the number 1, which denotes a termination point for the bond 

labeled ‘1’. In this complex, the c-site on B is free and all other sites on A or B (that were 

specified in the species block) may be in any possible state. All the binding reactions 

generated by this reaction rule will have a second-order rate constant kon, and all dissociation 

reactions will have the first-order rate constant koff. Observables describe the sums over the 

concentrations of species sharing similar attributes, which correspond to the quantities that are 

measured in typical biological experiments. For example, the observable 

Molecules P_s2_phos P(s2~pY) 

defines the observable named P_s2_phos of type Molecules, which means a weighted sum 

over the species matching the pattern P(s2~pY), which finds instances of the protein P in 

which the site s2 is in state pY.  

 The last major element of a bngl-file is the set of actions, which are commands that 

operate on a model specification. Two basic commands are illustrated in the examples presented 

in Supplements 1, 2, and 6. The generate_network command automatically generates the 

set  of all feasible species and reactions by iterative application of the rules to the initial set of 
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species. The resulting network can be written either in the BioNetGen-specific format (net-file) 

or exported in the Systems Biology Markup Language [37], which can be imported by a large 

number of other simulation and analysis tools. The simulate_ode command performs and 

ODE-based simulation of the network over a specified time period with results reported at 

specified time points. Additional commands and details of BNGL syntax can be found in [19]. 
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Tables 

 

Table 1. Quantification of the network reduction achieved by the domain-oriented 

reduction method.
1
 

 Total number 

of species in 

the full / 

reduced 

model 

Total number 

of reactions in 

the full / 

reduced 

model 

CPU time for 

network generation, 

of the full / reduced 

model (s) 

CPU time for 

ODE 

integration of 

the full / 

reduced model 

(s) 

Receptor 

with 2 

tyrosine 

residues 

708/108 7432/534 51.6/8.45 1.45/0.22 EGFR-like 

network  

 

Receptor 

with 3 

tyrosine 

residues 

6000/135 81364/642 662.0/12.0 12.58/0.76 

Receptor 

with 2 

tyrosine 

residues 

213/48  2230/198 14.2/3.87 0.47/0.15 FcεRI-like 

network 

Receptor 

with 3 

tyrosine 

residues 

1599/60 22990/240 182.4/6.02 3.58/0.12 

1
Computed using BioNetGen 2.0.41 running on Pentium® 4 CPU 2.80 GHz with 1 GB RAM . 
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Table 2. Overview of limitations in the current version of the domain-oriented reduction 

module.  See corresponding section of Supplement 5 for further discussion of each 

limitation.  

Limitation Model properties that 

trigger this limitation  

How the module 

processes this case 

How to avoid the 

problem 

Plans for future 

handling  

1. Identical 

site names 

Proteins containing two or 

more sites that have the same 

name. 

Sites with identical 

names are assumed 

mutually dependent.  

Make site names 

unique.  

None. 

2. Implicit 

bonds 

include / exclude 

directives in reaction rules. 

Implicit bonds in reaction 

rules or observables. 

Implicit bonds are not 

considered in control 

relationships.  

Remove include / 

exclude directives 

and implicit bonds from 

the model. 

Identification of 

control relationships 

through iterative 

processing  

3. Binding 

between 

shared and 

unique sites of 

the same 

auxiliary 

protein 

Complexes that contain a 

bond or a chain of bonds that 

connects the shared and 

unique sites of one auxiliary 

protein or two auxiliary 

proteins of the same type.  

Generates reduced 

models with incorrect 

mass-balance. 

Inspect species list for 

occurrence of such 

complexes.  Validate 

results of reduced 

model against full 

model. 

Automated detection 

of offending 

complexes. 

4. Control 

relationships 

between sites 

on different 

proteins 

State of protein P influences 

transformation between 

states of protein Q within a 

complex. 

 Generation of 

incorrect reduced 

models for the 

observables that 

contain Q. 

Disable reduction of P 

by using the command-

line option “-nored 

P” 

Unknown. 

5. Binding 

between 

shared sites of 

different 

proteins 

Binding of reducible proteins 

through shared sites, i.e., 

heterodimerization.  

Generation of 

incorrect reduced 

models. 

Disable reduction of 

proteins involved in 

heterodimerization 

using –nored option. 

Unknown. 

6. Stochastic 

simulations 

Simulation of reduced 

models using kinetic Monte 

Carlo methods, e.g., 

Gillespie algorithm.  

Levels of shared site 

occupancy are 

decoupled among 

auxiliary proteins. 

Validate results of 

reduced model against 

full model to estimate 

size of errors. 

Correlated Monte 

Carlo sampling [34]. 
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Figures 

 

 

Fig. 1. Multiplicity of the states of receptor and receptor-adapter complexes.  The state of the 

receptor molecule R is characterized by a vector (r1, r2, r3, r4), where r1 stands for the ligand (L)-binding 

site, r2 depicts the dimerization site, and r3 and r4 specify the state of docking sites for adapter proteins. 

The adapter protein B is a scaffold that possesses three sites (site b1 for binding to the receptor, and 

tyrosine residues b2 and b3).  

 

 

 

Fig. 2. A flowchart of operations for the domain-oriented reduction algorithm. 
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Supplemental Materials 

 

Supplement 1.  A BNGL script that describes the EGFR-like network, depicted in Fig. 1. 

Supplement 2.  A BNGL script that manually specifies the reduction of a model for a 

kinase K that binds and phosphorylates a protein Q at multiple sites. 

Supplement 3. Algorithms for processing the net-file for the reduced model. 

Supplement 4. A BNGL script that describes the FcεRI-like network. 

Supplement 5.  Limitations of the domain-oriented reduction method. 

Supplement 6. A BNGL script for ordered phosphorylation of a substrate. 
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