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ABSTRACT 

 

Large, complex datasets that are generated from microarray experiments create a need for 

systematic analysis techniques to unravel the underlying connectivity of gene regulatory 

networks.  A modular approach, previously proposed by Kholodenko and co-workers, 

helps to scale down the network complexity into more computationally manageable 

entities called modules. A functional module includes a gene’s mRNA, promoter and 

resulting products, thus encompassing a large set of interacting states. The essential 
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elements of this approach are described in detail for a three-gene model network and later 

extended to a ten-gene model network, demonstrating scalability. The network 

architecture is identified by analyzing in silico steady-state changes in the activities of 

only the module outputs -communicating intermediates- that result from specific 

perturbations applied to the network modules one at a time.  These steady-state changes 

form the system response matrix, which is used to compute the network connectivity or 

network interaction map. By employing a known biochemical network, we are able to 

evaluate the accuracy of the modular approach and its sensitivity to key assumptions.  

 

Key words: gene networks, reverse engineering, modular approach, connection 

coefficients 

 

1. INTRODUCTION 

 

The advent of high-throughput microarray technologies has paved the way for large-scale 

characterization of the expression of thousands of genes as well as proteins 

simultaneously on a single chip [1, 2, 4, 5]. These technologies have made it possible to 

tackle long-standing challenges associated with the study of genetics and complex 

cellular control systems. Because of the fundamental nature of the biological processes in 

a living cell, changes in the cellular environment result in the co-regulation and co-

expression of many genes and proteins [3].  Proper and efficient analysis of the resulting 

large number of genomic and proteomic data sets requires the development of robust 

mathematical algorithms and statistical models. These models help researchers extract 

 2



  

valuable information from the large data sets and provide insight into how regulatory 

information is processed in the living cell by identifying functional roles for the 

participating genes and proteins. 

 

There are numerous examples of computational modeling applications in the study of 

biochemical systems [6-12]. One of the earlier methods suggested involves the 

mechanistic “bottom-up” approach used to build a biochemical network with the data 

obtained from specially designed experiments [13]. Reaction kinetic parameters, which 

are required for a kinetic network model, are either obtained from the literature or 

estimated from appropriate experimental data [12]. The “bottom-up” approach requires 

that molecular processes be considered exhaustively, resulting in a network structure, 

which while physically accurate, suffers from two major problems: the need to determine 

a large number of parameters, and its inability to discover new interactions.  

 

Unlike the “bottom-up” approach, top-down/modular analysis does not require complete 

information on the molecular interactions and has proven advantageous both for 

discovering unknown interactions and for estimating unknown kinetic parameters [14, 

15]. Such techniques include clustering of genes and other statistical algorithms based on 

similarity in expression profiles [16-20]. Associations found among genes, however, did 

not reveal magnitude and direction of functional interactions between them [15]. Methods 

based on Boolean networks, where genes and proteins are either “ON” or “OFF” have 

been postulated to reveal the interactions between them [21]. While these approaches 

reveal the functional interactions qualitatively at a macroscopic level [22], they lack 
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detailed quantitative information on the biochemical reality of cellular regulation [23].  

Other steady-state reverse engineering methods include ARACNE [24] and the methods 

that are based on Dynamic Bayesian Networks (DBN) to quantify the network 

interactions [25, 26]. The ARACNE method does not require perturbations, but it is less 

informative and precise than the DBN methods [25, 27]. However, a comprehensive 

model of chemical reactions that directly provides the structure of a biochemical network 

is desirable [28]. 

 

The present work is based on the so-called “top-down” approach to inferring the network 

interaction map that was recently proposed [29]. In this approach, the sensitivity analysis 

is used to relate the output properties of a model biochemical network to the changes in 

its reaction parameters. These changes in the reaction parameters also known as systemic 

perturbations are generally applied to mathematical models of gene networks in order to 

mimic responses that would otherwise have had to be obtained experimentally through 

the use of antisense RNA to silence specific genes or by introducing an external ligand or 

an enzyme. Theoretically, perturbations applied to the network are considered to be of 

infinitesimal size; in practice, they are finite. Similarly, the reverse engineering method 

proposed in [30] is based on steady state responses to perturbations. This method, 

however, requires both the size of perturbation applied and the steady state measurements 

of mRNA concentrations (for an in-depth comparison of methods proposed in [14, 30 and 

31] see Ref. [32]). 
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Our approach is modular (Figure 1), where a functional module is defined as an entity of 

known/unknown genes, proteins or metabolites, grouped together and internally 

connected by complex physico-chemical interactions [14, 33]. Without prior knowledge 

of the network architecture, known species may be grouped in the simplest possible way 

to form modules. The design of the modules need not be rigid: a module may contain 

mRNAs of a specific gene or a cluster of genes connected by regulatory elements in the 

signaling pathway. The modular approach endows the individual network units that 

execute one or more biological function with functional independence [14, 33]. Although 

several known and unknown complex inter-modular interactions might exist, only one 

inter-modular interaction is considered, and therefore only one output/communicating 

intermediate per module is selected in the present work. In practice, this selection is 

based on the available experimental data. For a transcript/protein expression profile, 

mRNA/protein species form the communicating intermediate. Thus, the modular 

approach reduces the number of species to be assayed without having to be concerned 

about the intra-modular interactions explicitly [33, 34]. Physically no mRNA directly 

affects another mRNA and the proteins and metabolites present in the biochemical 

network function as intermediate agents [29, 35]. Gene networks based on gene 

expression alone are thus concise representations of various interacting species [15]. 

 

In order to benchmark the modular approach, it is applied to a mechanistic detailed 

transcript regulatory network [36] (Figure 2). In this model, gene regulation takes place 

via several transcription factors and proteins in the biochemical network. Figure 2 shows 

the binding of transcription factors to the promoters and the consequent formation of 
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mRNA through the transcription process, followed by the translation of mRNA to 

protein.  Translated proteins dimerize and then function as transcription factors in the 

transcriptional regulatory mechanism. This mechanism forms the basic structure of each 

of the four regulatory motifs, which were assembled to construct the ten-gene network. 

For instance, the dimer D2 activates the promoter of gene E (PE) to form the dimer-

promoter complex D2-PE, which facilitates the formation of the transcript ME. In another 

instance, the ligand bound to protein E activates the promoter of gene F and forms the 

active promoter of gene F (EQ-PF), which in turn helps in the formation of the transcript 

MF. Each regulatory motif in the network is a cluster of two to four interacting genes 

whose topology and reaction parameters were obtained from the literature. The four 

regulatory motifs used in the construction of the ten-gene network were: (a) gene 

cascade, (b) mutual repression, (c) auto-activation and sequestration, and (d) agonist-

induced receptor down-regulation.  

 

In our benchmarking study, we were interested in the scalability and accuracy of the 

modular approach.  To test scalability, we first implemented the approach using the 

agonist-induced receptor down-regulatory motif (shaded region in Figure 2), which is a 

network of three genes and a subset of the full network. Subsequently, we applied the 

approach to the complex ten-gene regulatory network and identified the conditions under 

which the majority of the interconnections could be uncovered. For cases where the 

modular approach was unsuccessful, we sought the root cause and provide guidelines for 

its general application. Since the true underlying network was known for these in silico 

networks, it was possible to estimate the accuracy of the reverse engineering approach.  
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Benchmarking the modular analysis in this way is an important step that will aid the 

interpretation of results obtained from applying it to experimental data.  Although 

detailed gene regulatory networks have been published for some systems [3, 46, 47], it is 

impossible to be certain whether the inferred network matches the true underlying 

network without extensive experimental validation.  For this reason, we feel that 

computational benchmarking plays an indispensable role in the development and 

application of the modular approach. 

 

2. METHODS 

 

2.1. Modularization of the gene regulatory network and selection of the 

communicating intermediates 

 

An application of the modular approach to the agonist–induced receptor down-regulatory 

motif resulted in the three modules shown in Figure 3. In our modular design, a 

functional module consisted of a gene, its promoter, and products (transcription factors). 

The species, once grouped into specific modules, were not repeated in other modules. 

mRNA and protein species from each module was selected one at a time as a module 

output/communicating intermediate. Mass flow between the communicating 

intermediates was considered to be negligible. A system of differential equations 

consisting of 12 variables and 32 parameters (Appendix 5.1 and 5.2) was used to simulate 

the dynamic behavior of a three-gene motif. Subsequently, the modular approach was 

applied to a larger ten-gene regulatory network.  
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2.2. Calculation of a local response matrix/network interaction map 

 

Initial conditions for all the variables in the model biochemical system were defined and 

then the system was allowed to reach equilibrium. A biochemical network, when 

perturbed, attains a new steady state different from the one before perturbation. 

Therefore, steady state activities of the communicating intermediates were computed to 

have reference activities before the application of perturbation. The reaction rates were 

changed by 10% (in practice, such finite perturbations are feasible as opposed to 

infinitesimal perturbations) to simulate the experimental perturbations. The number of 

perturbations was always equal to the number of communicating intermediates in the 

present work. Following this, the new steady state activities of the communicating 

intermediates were computed. The fractional changes in the steady state of the 

communicating intermediates before and after the application of perturbation were 

calculated using equation 1 to obtain the system response matrix.  

System response matrix 

            

                 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )1

1
2

2
01

01

01

01

1 +

−
=

+

−

jj

jj

jj

jj

xx
xx

xx
xx (1) 

ln ≈∆ jx

 

where xj
(1) is the activity of the communicating intermediate after the perturbation and 

xj
(0) is the activity of the communicating intermediate prior to the perturbation. These 

values form the column of matrix Rp (∆ilnx1… ∆ilnxm)
T
 and characterize the response of 

the entire system to the parameter perturbation of a specific module. Equation 2 was 
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applied to the Rp matrix to obtain the network interaction map/r-matrix. 

Local response matrix 

          r = - [dg (Rp
-1)]-1. Rp

-1 
(2) 

The elements of the r-matrix are dimensionless coefficients obtained from the Jacobian 

matrix normalized by its diagonal elements [29]. Thus the r-matrix contains only the first-

order sensitivities and biologically it represents the direct effect of one communicating 

intermediate on the other, with the remaining species mediating in the network module. 

Each coefficient rij quantifies the strength and nature (stimulatory/inhibitory) of the 

corresponding network interaction, and when | rij | ≥ 0.1 the interaction is considered to 

be significant. 

 

2.3. In silico testing of the predicted network 

 

The network interaction map was determined on the basis of finite parameter perturbation 

applied to each of the network modules. We tested the accuracy of this prediction against 

the known (“theoretical”) interaction map r. The connection coefficient rij quantifies the 

fractional change (∆xi/ xi) in the activity of communicating intermediate xi of module i 

brought about by the change (∆xj/ xj) in the activity of communicating intermediate xj of 

module j (in the limit of infinitesimal changes) when modules i and j are conceptually 

considered in isolation of the network [14]. Using this definition, the coefficients rij were 

calculated by applying a 1% perturbation to communicating intermediate xj [14].  
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3. CASE STUDIES 

 

3.1. Three-gene network 

 

In the first case study, the reverse engineering method was applied to a three-gene model. 

Two scenarios were simulated in our in silico studies: (1) assuming that gene expression 

data (mRNA concentrations) were monitored experimentally, the network was 

conceptually modularized with mRNA species as communicating intermediates, and 

perturbations were applied to mRNA degradation rate constants; and (2) assuming that 

protein expression data were monitored experimentally, protein species were considered 

as communicating intermediates in the modularized scheme, and protein degradation rate 

constants were perturbed. In either case, a finite perturbation of 10% increase in 

magnitude was applied. The network interconnections recovered for the two scenarios 

after applying the reverse engineering approach are shown in Tables 1a and b.  The 

perturbation effect of a gene on the remaining genes is illustrated by the r-values down 

the column corresponding to that gene in the 3×3 interaction map. For example, in the 

case where mRNA levels were used, module D had an inhibitory effect on module E (r-

value = -0.92), while module D had no effect on module F (r-value ~ 0).  In both 

scenarios, similar results were obtained: we found that module D inhibited module E, 

module E stimulated module F, and module F stimulated module D.  The directionality of 

these interactions was in agreement with the topology of the true network. Furthermore, 

the interaction magnitudes that we recovered were very close to the theoretical values 

(Table 1c).  Details for computing the theoretical r-values are given in Appendix 5.3.  
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These results demonstrate that the modular reverse engineering approach described above 

successfully identified the three-gene network for the two scenarios considered using 

10% perturbations.  

 

Table 1a: Three-gene interaction map for the simulated scenario in which mRNA species 

were considered as communicating intermediates and 10% perturbations were applied to 

their degradation rate constants. X-axis corresponds to regulating modules and y-axis 

corresponds to regulated modules.   

mRNA MD ME MF 
MD -1.00 0.00 0.81 
ME -0.92 -1.00 0.00 
MF 0.00 0.92 -1.00 

 

Table 1b: Three-gene interaction map for the simulated scenario in which protein species 

were considered as communicating intermediates and 10% perturbations were applied to 

their degradation rate constants. X-axis corresponds to regulating modules and y-axis 

corresponds to regulated modules. 

Protein D E F 
D -1.00 0.00 0.71 
E -1.66 -1.00 0.00 
F 0.00 0.59 -1.00 

 

 Table 1c: Comparison of the r-values computed using the reverse engineering approach 

(c.v) with the theoretical r-values (t.v) 

  
                                                            

RNA c.v t.v 
rMD-MF 0.81 0.79 
rME-MD -0.92 -0.90 
rMF-ME 0.92 0.91 

Protein c.v t.v 
 rD-F 0.71 0.69 
rE-D -1.66 -1.64 
rF-E 0.59 0.59 
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3.2. Ten-gene network 

 

Following the three-gene network example, we simulated scenarios for the ten-gene 

network for which both mRNA and protein data were assumed to be available 

experimentally, and the modules and communicating intermediates were defined 

accordingly. As before, perturbations to the communicating intermediate degradation rate 

constant were considered experimentally accessible and perturbations of magnitude 10% 

increase were applied.  The interactions maps recovered for both the scenarios are shown 

as 10×10 matrices in Tables 2a and b. Computations of theoretical r-values were 

performed in the same manner as for the three-gene network. The r-values computed 

using the reverse engineering algorithm was very close to theoretical values, as shown in 

Table 2c for the case where mRNA species were used as communicating intermediates.   

 

Table 2a: Ten-gene interaction map for the simulated scenario in which mRNA species 

were considered as communicating intermediates and 10% perturbations were applied to 

their degradation rate constants. X-axis corresponds to regulating modules and y-axis 

corresponds to regulated modules. 

 MA MB MC MD ME MF MG MH MJ MK
MA -1.00 -0.07 0.00 0.00 0.00 0.00 0.00 0 0 0.00
MB 0.07 -1.00 0.00 0.01 0.00 0.66 0.00 0 0 0.00
MC 0.37 -0.15 -1.00 -0.65 0.00 -0.01 0.00 0 0 0.00
MD 0.00 0.00 0.00 -1.00 0.00 0.79 0.00 0 0 0.00
ME 0.00 0.00 0.00 -0.96 -1.00 0.00 0.00 0 0 0.00
MF 0.00 0.00 0.00 0.00 0.92 -1.00 0.00 0 0 0.00
MG 0.00 0.00 -0.91 0.00 0.00 0.00 -1.00 0 0 0.00
MH 0.00 0.00 0.02 0.00 0.00 0.00 -0.76 -1.00 0 0.00
MJ 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0 -1.00 0.40
MK 0.00 0.00 -0.91 0.00 0.00 0.00 0.00 0 0 -1.00
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Table 2b: Ten-gene interaction map for the simulated scenario in which protein species 

were considered as communicating intermediates and 10% perturbations were applied to 

their degradation rate constants. X-axis corresponds to regulating modules and y-axis 

corresponds to regulated modules. One can see the r-values representing the mutual 

repression of protein species A and B in blue and purple boxes. 

  A B C D E F G H J K 
A -1.00 -0.58 0.00 0.01 0.00 0.00 0.00 0 0 0.00 
B -0.93 -1.00 0.00 0.00 0.00 1.10 0.00 0 0 0.00 
C 0.09 0.00 -1.00 -0.62 0.00 0.00 0.00 0 0 0.00 
D 0.00 0.00 0.00 -1.00 0.00 0.73 0.00 0 0 0.00 
E 0.00 0.00 0.00 -1.65 -1.00 0.00 0.00 0 0 0.00 
F 0.00 0.00 0.00 0.00 0.58 -1.00 0.00 0 0 0.00 
G 0.00 0.00 -0.97 0.00 0.00 0.00 -1.00 0 0 0.00 
H 0.00 0.00 0.01 0.00 0.00 0.00 -1.32 -1.00 0 0.00 
J 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0 -1.00 0.67 
K 0.00 0.00 -0.97 0.00 0.00 0.00 0.00 0 0 -1.00 
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Table 2c: Comparison of theoretical (top number in the box) and calculated (bottom 

number in the box) r-values of the ten-gene regulatory network with mRNA species as the 

communicating intermediates. 

 MA MB MC MD ME MF MG MH MJ MK 
MA -1    

-1  
-0.08 
-0.07 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

MB 0.06   
0.07 

-1 
-1 

0 
0 

0 
0 

0 
0 

0.66 
0.66 

0 
0 

0 
0 

0 
0 

0 
0 

MC 0.32 
0.37 

-0.18 
-0.15 

-1 
-1 

-0.65 
-0.65 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

MD 0 
0 

0 
0 

0   
0 

-1 
-1 

0 
0 

0.77 
0.79 

0 
0 

0 
0 

0 
0 

0 
0 

ME 0 
0 

0 
0 

0 
0 

-0.95 
-0.96 

-1 
-1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

MF 0 
0 

0 
0 

0 
0 

0 
0 

0.92 
0.92 

-1 
-1 

0 
0 

0 
0 

0 
0 

0 
0 

MG 0 
0 

0 
0 

-0.91 
-0.91 

0 
0 

0 
0 

0 
0 

-1 
-1 

0 
0 

0 
0 

0 
0 

MH 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

-0.76 
-0.76 

-1 
-1 

0 
0 

0 
0 

MJ 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

-1 
-1 

0.38 
0.40 

MK 0 
0 

0 
0 

-0.91 
-0.91 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

-1 
-1 

 

For the simple three-gene network, the entire network interaction map was identified 

accurately. For the more complex ten-gene network, however, some of interactions were 

identified incorrectly. For example, when mRNA measurements were considered (Table 

2a), the regulatory effect of module A on module B was very weak and insignificant 

using our threshold (r < 0.1).  In the actual network, module A positively regulates 

module B.  Also an inhibitory effect of module B on module C with connectivity strength 

of -0.15 was observed (Table 2a), when in fact module B does not directly regulate 

module C. Lastly, the effect of module C on module D was not significant (r < 0.1), when 

in reality modules C and D are co-repressive.  These results demonstrate that the reverse 

engineering approach may not identify network interactions accurately when applied to 
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systems as complex as the ten-gene network.  The following sections examine the causes 

of the incorrect interactions and identify possible remedies. 

 

3.2.1 Violation of assumptions by unknown protein-protein interactions 

 

Following the modular design, a gene, its promoter and products were grouped into a 

functional module. However, while grouping known network species, certain a-priori 

unknown hetero-dimers that are formed by protein products of two different genes were 

not considered. In the ten-gene regulatory network analyzed, the hetero-dimer AB is a 

product of two genes A and B. Since the presence of the hetero-dimer AB was not known 

and hence not taken into consideration, this led to a marked difference between the 

connection-coefficients of mRNAs and proteins for modules A and B. On the contrary, if 

the presence of the hetero-dimer AB was known, we could include both genes A and B 

and their products into a single module. The development of a network inference 

approach that could determine a-priori which measurements are derived from hetero-

dimers in a single module or involve hetero-dimers between the proteins of separate 

modules would be an important achievement for the Systems Biology.  

 

It follows from Table 2a that gene A had a weak stimulatory effect on gene B (rBA = 

0.07). Therefore, an increase in the concentration of protein A should increase the 

concentration of protein B. However, we observed in Figure 4 that as the concentration of 

protein A increased, the concentration of protein Bfree (freely available concentration of 

protein B in the system), did not change initially, but eventually decreased. The 
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interpretation of this process and the cause of the weak regulatory strength of module A 

on module B is as follows: With increasing concentration of protein A, the concentration 

of dimer AB increased while the concentration of protein Btotal (sum of freely available 

concentration of protein B and dimer AB) and Bfree remained constant (Figure 4). The 

initial concentration of protein A might have been so small that the amount of protein B 

that was utilized in the formation of the AB dimer was negligible. Subsequently, the 

concentration of dimer AB stabilized and that of Btotal continued to be constant, while 

amount of protein Bfree decreased. This shows that protein Bfree was incorporated in the 

formation of dimer AB, and thus explains the constant formation of dimer AB. It is 

important to note that the concentration of protein Btotal remained constant throughout. 

This reveals a special case where the entire promoter region of gene B could have been 

saturated with the transcription factor A and thus an additional amount of protein A did 

not increase the transcription rate of protein B. Due to this steady concentration of protein 

Btotal, the strength of this interaction was not significant. Moreover, a significant 

interaction between protein states A and B, which was evident from a protein interaction 

map, strengthened the prediction of an unknown molecule, which in this case was a 

hetero-dimer AB. It was observed that with protein molecules as the communicating 

intermediates, module A inhibited module B with a regulatory strength of -0.93 and 

module B inhibited module A with a regulatory strength of –0.58 (Table 2b). 

 

Applying perturbations to module B, the concentrations of protein B, Afree (freely 

available protein A in the system), AB and Atotal (Atotal = Afree + AB + APA) can be 

quantified. As the concentration of protein B increased, more and more of protein Afree 

was aggregated for the AB complex (Figure 5). Hence, we initially noticed an increase in 
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the concentration of AB and a decrease in the concentration of Afree. Subsequently 

however, the amount of free protein A decreased along with a decline in the concentration 

of AB complex. The amount of protein A used in the formation of AB complex might 

have been significant enough, thus limiting its self-activation i.e. a negligibly small 

concentration of protein-promoter complex (APA). The sharp transition from one 

saturated state to another of the promoter of gene A (Figure 6) explained the total 

concentration reduction of protein A. Switching the promoter of gene A from a saturated 

active state to a complete inactive state, limited the formation of AB complex and gave 

rise to a negative r-value. We noticed that the mRNA interaction map was inadequate to 

quantify the network connectivity but the protein interaction map greatly added to the 

information. Extrapolation of the protein expression levels from the experimentally 

acquired and quantified mRNA data is not feasible [37]. In conclusion, analyzing both 

mRNA and protein expression data provided a better insight to the network connectivity 

[38].  

 

3.2.2. Detection of an indirect interaction 

 

From the previous discussion, we know that module B has an inhibitory effect on module 

A and the calculated interaction map illustrated that module A has a stimulatory effect on 

module C. Combining both of these effects; module B might have an inhibitory effect on 

module C (Figure 7). An indirect interaction between modules B and C from the mRNA 

interaction map with a regulatory strength of -0.15 was observed, i.e. B influenced C only 

through its influence on A (Table 2a). 
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3.2.3. Variation of the perturbation size helps unravel network interactions 

 

In gene networks, saturation of the promoter regions by transcription factors might 

require large perturbation magnitudes to see detectable changes in the network responses. 

For instance, connections between modules C and D in the ten-gene regulatory network 

could be revealed by application of large perturbations. Indeed, from the known model, it 

is apparent that modules C and D are mutually repressive. However, the r-value 

indicating the effect of module C on module D was not consistent with the known model 

(Table 2a and 2b) i.e., the perturbation to module C did not reveal its direct effect on 

module D. When analysis at the molecular level was done, it was observed that the 

concentrations of protein C and dimer C2 increased with increasing concentration of MC 

(Figure 8). However, the concentrations of mRNA MD and protein D remained constant. 

Also, it was observed that with an increase in the concentration of mRNA MC, the 

concentration of dimer-promoter complex C2PD increased exponentially and reached the 

saturation value of two (due to saturation of the promoter region of gene D, Figure 9).  

 

The hypothesis made was that gene D might be regulated by many other genes and as a 

result its promoter region was getting saturated. To test this effect, C and D modules were 

separated from the larger ten-gene network and perturbation size ranging from 1 to 99% 

decrease in mRNA degradation rate constant was applied. As the magnitude of 

perturbation increased to 99% (reduction in mRNA degradation rate constant), the 

response co-efficient increased to -0.36 (Table 3).  
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Table 3: Sensitivity of module D to a range of perturbations applied to module C 

% Perturbation applied to module C Sensitivity of module D  

99% increase -0.0009 

95% increase -0.0010 

90% increase -0.0010 

85% increase -0.0010 

50% increase -0.0012 

10% increase -0.0015 

01% increase -0.0016 

01% decrease -0.0016 

10% decrease -0.0018 

50% decrease -0.0034 

85% decrease -0.0164 

90% decrease -0.0285 

95% decrease -0.0703 

99% decrease -0.3668 
 

This behavior was understood by considering the differential equations that governed the 

transcription reaction of transcript MD in the C and D module sub-network (equation 3) 

as well as in the large ten-gene model network (equation 4).  

2 2
d[MD]  =  - kDMD× MD + kRPD× PD + kRC PD×C PD

dt
   (3) 

 

2 2

2 2 2 2 2 2

d[MD]  =  - kDMD× MD + kRPD× PD + kRF PD× F PD
dt

                + kRC F PD×C F PD+kRC PD× C PD
   (4) 

 

In the sub-network, the promoter of gene D shifts from an unbound state (PD) to a bound 

state (C2PD) and the transcription rate constants were kRPD = 0.00073 and kRC2PD = 0. 
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If kRC2PD < kRPD, dimer C2 represses the formation of mRNA MD. Because there is 

only a slight difference between the rate constant values, we observed sensitivity of 

module D to extremely high perturbations subjected to module C. However, in case of the 

large ten-gene regulatory network, the promoter of D shifts from a dimer-promoter bound 

level of F2PD to C2F2PD and the transcription rate constants are kRF2PD = 0.73 and 

kRC2F2PD = 0.73. Since there is no change in the rate constant values, sensitivity of 

module D was not observed for any magnitude of perturbation to module C. Therefore, 

the invisibility of the C-D interaction in the large ten-gene network was due to multiple 

regulations of gene D and saturation of its promoter region.  

 

4. DISCUSSION 

 

In engineering systems, complexity involving redundancy, feedback loops and modular 

organization provides robustness, stability and reliability [13]. The analysis and 

prediction of the behavior of complex biological systems analogous to such engineering 

systems requires understanding molecular level properties and interactions [34]. High-

throughput experimental datasets reveal the effects of lower level molecular mechanisms 

on cellular function [15]. Thus scalable and accurate computational models that predict 

network interactions from the high-throughput experiments are required. Biological 

network models have generally been based on mathematical frameworks that describe 

topological connections [3, 15, 39, 40], or describe the complete dynamic behavior of the 

system [8, 12]. The former approach is often based on correlations between expression 

profiles and is typically unable to determine the strength and direction of network 

 20



  

interactions. The latter is often formulated in terms of differential equations with the 

objective of integrating experimental data with the models to quantitatively unravel 

network properties [41].  

 

An “unraveling” algorithm based on sensitivity analysis combined with modularization 

concepts was recently proposed to quantify the strength of network connections from 

experimental data [14, 29, 31]. The output of the algorithm is interaction map/network 

connectivity, with elements that represent the direct effect of one network species on 

another when subject to individual perturbations and holding the concentrations of the 

remaining network species constant.  In an experimental setting, errors in inferred 

network connectivity matrix/interaction maps may arise from data limitations, violations 

of the reverse engineering assumptions, or insufficient network perturbations.  To gain an 

understanding of these sources of error, we performed in silico benchmarking studies.  

We investigated both the accuracy of the inferred interactions as well as scaling 

properties by applying the modular approach to realistic gene regulatory network models 

of varying complexity, specifically three-gene ten-gene regulatory networks described in 

[36].  

 

The interaction map of the three-gene network was obtained accurately. Importantly, 

interactions of similar strength and directionality were obtained regardless of whether 

protein or mRNA species were used as communicating intermediates. While most of the 

network interconnections were successfully recovered for the more complex ten-gene 

network, some limitations of the reverse engineering method were also revealed. We 
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found that our ability to reverse engineer the network was strongly influenced by 

promoter saturation, a phenomenon in which small variations in transcription factor 

levels no longer lead to changes in transcription initiation rates.  This is a direct result of 

the non-linear nature of transcriptional regulation that involves recruitment of the Pol II 

complex to transcription factor bound promoters.  When increasing a transcription factor 

concentration only marginally increases its probability of promoter binding, it will have a 

marginal effect on the target gene transcription rate.  In the ten-gene model,  increasing 

the concentration of protein A did not markedly change the total concentration of protein 

B, giving rise to an insignificant inferred A-B regulatory interaction strength when 

mRNA levels were used as communicating intermediates.  Interestingly, when protein 

levels were used as communicating intermediates, a mutual repression of modules A and 

B was inferred, which led to the correct prediction of the AB hetero-dimer. These results 

demonstrate that transcript and protein interaction maps would serve complementary 

roles in the modular analysis.  Promoter saturation also had an interesting impact on 

genes with multiple regulatory inputs, given that saturation with respect to one regulator 

may conceal its regulation by others.  In the mutual repression motif (C and D modules) 

of the ten-gene network, module D was not sensitive to perturbations in module C, 

regardless of the perturbation magnitude, when the dimer F2 was present in high 

concentrations. Only by decoupling these modules from the complete network did it 

become possible to unravel their co-repressive interaction. Yet even in this case it was 

necessary to apply very large perturbations to module C to observe any response in 

module D.  This result also illustrates the potential importance of large perturbations for 

generating detectable responses, even though the modular approach was derived for the 
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theoretical case of infinitesimal perturbations. Additionally, the implementation of large 

perturbations may provide some robustness to measurement noise, given that larger 

responses will be easier to distinguish from background variation. 

 

The aim of our paper was to examine the scalability and accuracy of the reverse 

engineering method by performing in silico benchmark analyses.  It was instructive to 

consider the noise-free case, since this represents the “ideal” situation.  A natural 

extension of this work is to perform additional in silico benchmark studies using models 

that address the stochastic nature of gene expression [36], as well as studies including 

simulated measurement noise.  In these cases, noise-robust variations on the current 

modular approach [35] will be suitable.  Furthermore, the application of the reverse 

engineering approach presented here to experimental systems for which a large number 

of regulatory interactions are known a’ priori would be a productive area for future work.  

In particular, compendiums of expression profiles for single gene knockouts [48], 

transcriptional network structures [3, 46], and partial protein-protein interaction network 

data [49] are available for the model organism Saccharomyces cerevisiae and present 

excellent opportunities for reverse engineering studies.  The use of expression data from 

knockout perturbations that cover a small fraction of the genome, as opposed to the 

genome-wide finite perturbations considered here, and the formation of network modules 

from incomplete interaction data, however, present additional theoretical challenges for 

the modular reverse engineering approach that remain to be addressed.  Additionally, the 

modular approach may inspire experimental designs that seek system-wide finite 

perturbations and therefore yield data more amenable to reverse engineering, as opposed 
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to being restricted to datasets collected for other purposes.  Through additional 

generalization of our method, and the collection of experimental data designed with 

reverse engineering in mind, we expect the modular reverse engineering approach will be 

fruitfully utilized in many future applications. 

 

5. APPENDIX 

 

5.1) Table 5: Parameters in the ten-gene regulatory network (p = proteins, t = transcripts, 

m = molecules, c = cell) [11, 42-45]: 

Transcript degradation rate constant 1/minute 1/second 
kDMA, kDMC, kDMD, kDMF, kDMG, kDMK 3.1x10-2 5.1x10-4

kDMB 1.1x10-2 1.8x10-4

kDME 1.4x10-3 2.3x10-5

kDMH 4.8x10-4 8x10-6

kDMJ 9.7x10-3 1.62x10-4

Parameter Value with units value with units 

 
Transcription rate constant t/p/minute 1/second 
kRPA, kRPC, kRPD, kRPF, kRC2PG, kRPJ, 
kRC2PK  7.3x10-4 1.22x10-5

kRAPA, kRAF2PB, kRAPC, kRF2PD, kRC2F2PD, 
kREQPF, kRPG, kRK2PJ, kRPK 7.3x10-1 1.22x10-2

kRPE, kRPH 4.2x10-3 7x10-5

kRPB 3.6x10-4 6x10-6

kRAPB 3.6x10-2 6x10-4

kRF2PB 3.6x10-1 6x10-3

kRD2PC, kRC2PD 0 0 
kRAD2PC 7.3x10-2 1.22x10-3

kRD2PE 4.2x10-7 7x10-9
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Translation rate constant p/t/minute 1/second 
kTA, kTC, kTD, kTF, kTG, kTK 2.5 4.17x10-2

kTB 1.2 2x10-2

kTE, kTH 18.9 3.15x10-1

kTJ 24.5 4.08x10-1

 
Protein degradation rate constant 1/minute 1/second 
kDA, kDC, kDegD, kDF, kDG, kDK 6.6x10-3 1.1x10-4

kDB 2.9x10-3 4.83x10-5

kDE 7.8x10-4 1.3x10-5

kDH 1.6x10-4 2.67x10-6

kDJ 7.7x10-3 1.28x10-4

 
Dimer association rate constant c/m/minute 1/ (nM * sec) 
kC2, kD2, kF2, kG2, kK2, kAB 5.9x10-3 7.4x10-3

kEQ 2.4x10-3 3x10-3

 
Dimer dissociation rate constant 1/minute 1/second 
kUC2, kUD2, kUF2, kUG2, kUK2, kUAB 3.8 6.3x10-2

kUEQ 3.6 6x10-2

 
Dimer degradation rate 1/minute 1/second 
kDC2, kDD2, kDF2, kDEQ, kDG2, kDK2, kDAB 6.6x10-3 1.1x10-4

 
Promoter-transcription factor association rate 
constant c/m/minute 1/ (nM * sec) 

 
kPA, kPB, kPC, kPD, kPG, kPK, kPE, kPF, kPH, kPJ 7.5x10-4 9.4x10-4

 
Promoter-transcription factor dissociation rate 
constant 1/minute 1/second 
kUPA, kUPB, kUPC, kUPD, kUPG, kUPK, kUPE, 
kUPF, kUPH, kUPJ 0.39 6.5x10-3

 

 25



  

Ligand concentration, Q = 2 molecules/cell or 2.66x10-2 nM 

Total number of promoters per gene, PT = 2 

Avogadro’s number: 6.02*1023 molecules/mole 

Assumed cell volume: 125 µm3/cell = 125*10-18 m3/cell = 1.25*10-13 Liters/cell 

since 1M = 1 mole/Liter, 1 cell/ (molecule*minute) = 1.2542*109 1/ (M*sec) 

 

5.2.1) Differential Equations of the three-gene regulatory network: 

 

Transcripts 

2 2
d[MD]  =  - kDMD× MD + kRPD× PD + kRF PD× F PD

dt

2 2
d[ME]  =  - kDME× ME + kRPE× PE + kRD PE× D PE

dt
 

d[MF]  =  - kDMF× MF + kRPF× PF + kREQPF× EQPF
dt

 

 
Proteins 
 

2 2
d[D]  =  - kDegD× D + kTD× MD - 2[kD × D× D] + 2[kUD × D ]

dt
2  

d[E]  =  - kDE× E + kTE× ME - kEQ× E×Q + kUEQ× EQ
dt

 

2 2
d[F]  =  - kDF× F + kTF× MF - 2[kF × F× F] + 2[kUF × F ]

dt
2  

 
Dimers/Heterodimers 
 
d[EQ]  =  kEQ× E×Q - kUEQ× EQ - kDEQ× EQ - kPF× EQ× PF + kUPF× EQPF

dt
 

2
2 2 2 2 2 2

d[F ]  =  kF × F× F - kUF × F  - kDF × F - kPD× F × PD + kUPD× F PD
dt

2  

2
2 2 2 2 2 2

d[D ]  =  kD × D× D - kUD × D  - kDD × D  - kPE× D × PE + kUPE× D PE
dt

2  
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Bound Promoters 
 

2
2 2

d[D PE]  =  kPE× D × PE - kUPE× D PE 
dt

 

2
2 2

d[F PD]  =  kPD× F × PD - kUPD× F PD
dt

 

d[EQPF]  =  kPF× EQ× PF - kUPF× EQPF
dt

 

 

5.2.2) Applying the modular design, the differential equations of the three-gene network: 

 

Module 1 

d[EQPF]  =  kPF× EQ× PF - kUPF× EQPF
dt

 

d[MF]  =  - kDMF× MF + kRPF× PF + kREQPF× EQPF
dt

 

2 2
d[F]  =  - kDF× F + kTF× MF - 2[kF × F× F] + 2[kUF × F ]

dt
2  

2
2 2 2 2 2 2

d[F ]  =  kF × F× F - kUF × F  - kDF × F - kPD× F × PD + kUPD× F PD
dt

2  

 
Module 2 
 

2
2 2

d[F PD]  =  kPD× F × PD - kUPD× F PD
dt

 

2 2
d[MD]  =  - kDMD× MD + kRPD× PD + kRF PD× F PD

dt
 

2 2
d[D]  =  - kDegD× D + kTD× MD - 2[kD × D× D] + 2[kUD × D ]

dt
2  

2
2 2 2 2 2 2

d[D ]  =  kD × D× D - kUD × D  - kDD × D  - kPE× D × PE + kUPE× D PE
dt

2  

Module 3 
 

2
2 2

d[D PE]  =  kPE× D × PE - kUPE× D PE 
dt

 

2 2
d[ME]  =  - kDME× ME + kRPE× PE + kRD PE× D PE

dt
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d[E]  =  - kDE× E + kTE× ME - kEQ× E×Q + kUEQ× EQ
dt

 

d[EQ]  =  kEQ× E×Q - kUEQ× EQ - kDEQ× EQ - kPF× EQ× PF + kUPF× EQPF
dt

 

 

where, ME, MF and MD are the mRNAs, EQPF, F2PD and D2PE are the bound 

promoters, EQ, F2  and D2  are hetero-dimer and dimers, E, F and D are proteins, kDME, 

kDMF and kDMD are mRNA degradation rate constants, kRPE, kRDPE, kRPF, 

kREQPF and kRFPD are transcription rate constants, kEQ, kF2  and kD2  are dimerization 

and heterodimerizatiuon rates, kDegD, kDE and kDF are protein degradation rates, kTD, 

kTE and kTF are translation rates, kUD2, kUF2 and kUEQ are undimerization and 

unheterodimerization rates, kDD2 , kDF2  and kDEQ are dimer and heterodimer 

degradation rates, kPD, kPE and kPF are promoter binding rates,  kUPD, kUPE and 

kUPF are promoter unbinding rates,  Q is a ligand and PE, PD and PF are promoters. 

 

5.3) In silico testing of a gene regulatory network:  

 

Theoretically, we quantify the inter-modular connections in terms of fractional changes 

(∆xi/ xi) in the activity of communicating intermediate (xi) of a particular module (i) 

brought about by an infinitesimal change in the activity (xj) of another module (j), when 

activities of all other modules (xk, k ≠ i, j) are assumed to be fixed and the affected 

module (i) is allowed to reach equilibrium. The ratio of the change in mRNA 

concentration in module i over module j gives the theoretical r-value for that particular 

modular interaction. The perturbation size applied is 1% change in the activity of the 

communicating intermediate and this analysis was performed on both the three- and ten-
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gene regulatory networks. An example of application of this in silico testing on two 

modules of a model three-gene network is shown below:  

 

Consider the modules D and E of the model three-gene regulatory network: 

Apply disturbance to module D i.e. 1% increase in concentration of state MD. Fix all the 

other communicating intermediates except state ME. Relax rest of the states in the 

network. Observe the percentage change in concentration value of state ME.  

 

ME-MD
-0.90%  =  r   =    =  -0.90

1%
ME
MD

∆
∆

 

 
This tested value is very close the calculated r-value of -0.92. 
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8. FIGURE CAPTIONS: 

 

Fig. 1 Conceptual representation of the modular approach. Network elements are grouped 

into four modules: i, j, k & l; the corresponding communicating intermediates are xi, xj, xk 

and xl respectively 

 

Fig. 2 Topology of a ten-gene regulatory, metabolic network, published in [24], used to 

illustrate the modular approach. The irreversible transcription and translation reactions 

are represented with dashed arrows and perturbations were applied to these processes. 

Reversible dimerization and promoter binding reactions are represented with solid 

arrows. The highlighted area contains three genes that form a three-gene network. 

 

Fig. 3 Modular scheme of a three-gene regulatory network 

 

Fig. 4 Effect of increasing concentration of protein A on hetero-dimer AB, freely 

available protein B [Bfree] and the total amount of B in the system [Btotal = Bfree + AB] 

 

Fig. 5 Effect of increasing concentration of protein B on protein Afree (freely available 

protein A in the system) and hetero-dimer AB 

 

Fig. 6 Effect of increasing concentration of protein B on the total amount of protein A in 

the system 
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Fig. 7 Effect of increasing concentration of protein B on states of module A and C 

 

Fig. 8 Effect of increasing concentration of mRNA MC on protein C, dimer C2, mRNA 

MD and protein D 

 

Fig. 9 Saturation at the promoter region of gene D 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 6 
 

perturbation to module B 

0 

1 

2 

3 

4 

5 

0 2 4 6 8 
log(B) 

log(Atotal) 

 
 
 
 
 
 
 
Figure 7 
 

perturbation to module B

-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 

0 1 2 3 4 5 6 7 

log(B)

log(APC)
log(AD2PC)
log(MC)
log(C)
log(C2) 

 
 
 
 
 
 
 
 

 45



  

Figure 8 
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Figure 9 
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