577 research outputs found
Perfect separation of intraband and interband excitations in PdCoO
The temperature dependence of the optical properties of the delafossite
PdCoO has been measured in the a-b planes over a wide frequency range. The
optical conductivity due to the free-carrier (intraband) response falls well
below the interband transitions, allowing the plasma frequency to be determined
from the -sum rule. Drude-Lorentz fits to the complex optical conductivity
yield estimates for the free-carrier plasma frequency and scattering rate. The
in-plane plasma frequency has also been calculated using density functional
theory. The experimentally-determined and calculated values for the plasma
frequencies are all in good agreement; however, at low temperature the
optically-determined scattering rate is much larger than the estimate for the
transport scattering rate, indicating a strong frequency-dependent
renormalization of the optical scattering rate. In addition to the expected
in-plane infrared-active modes, two very strong features are observed that are
attributed to the coupling of the in-plane carriers to the out-of-plane
longitudinal optic modes.Comment: 7 pages with five figures and three tables; 4 pages of supplementary
materia
Cervial cancer screening among HIV-positive women in rural Cambodia: a pilot programme
Mexico AIDS Conference 200
Electron-hole asymmetry in Co- and Mn-doped SrFe2As2
Phase diagram of electron and hole-doped SrFe2As2 single crystals is
investigated using Co and Mn substitution at the Fe-sites. We found that the
spin-density-wave state is suppressed by both dopants, but the superconducting
phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence
of the superconductivity by Mn-doping is in sharp contrast to the hole-doped
system with K-substitution at the Sr sites. Distinct structural change, in
particular the increase of the Fe-As distance by Mn-doping is important to have
a magnetic and semiconducting ground state as confirmed by first principles
calculations. The absence of electron-hole symmetry in the Fe-site-doped
SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive
to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure
Information and Particle Physics
Information measures for relativistic quantum spinors are constructed to
satisfy various postulated properties such as normalisation invariance and
positivity. Those measures are then used to motivate generalised Lagrangians
meant to probe shorter distance physics within the maximum uncertainty
framework. The modified evolution equations that follow are necessarily
nonlinear and simultaneously violate Lorentz invariance, supporting previous
heuristic arguments linking quantum nonlinearity with Lorentz violation. The
nonlinear equations also break discrete symmetries. We discuss the implications
of our results for physics in the neutrino sector and cosmology
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
Visualization of defects in single-crystal and thin-film PdCoO2 using aberration-corrected scanning transmission electron microscopy
Funding: This work was primarily supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0002334.Single-crystal delafossite PdCoO2 is known to have an extremely low intrinsic impurity concentration of ~0.001%, demonstrating extraordinarily high conductivity with a mean free path of ~20 microns at low temperatures. However, when grown as thin films, the resistivity at room temperature increases by a factor of 3 to 80 times, depending on the film thickness. Using scanning transmission electron microscopy, we identify different classes of defects for the single crystal vs epitaxial thin film. The dominant defect for single-crystal PdCoO2 is found to be ribbon-like defects. For the thin films, we identify different types of defects arising in epitaxial thin films mainly due to substrate termination that disrupt the lateral connectivity of the conducting planes. Our results are consistent with the high conductivity of single crystals and increased electrical resistivity of the thin films compared to that of single crystals, suggesting that selecting a proper substrate, improving surface quality, and reducing the step density are the keys to enhance the film quality for utilizing PdCoO2 as a platform for future applications.PostprintPeer reviewe
- …