227 research outputs found

    Bringing High Leverage Practices to the Bluegrass: A Statewide Collaborative Effort

    Get PDF
    As a means to improve instruction for all students, Kentucky joined the national network of states engaged with the Collaboration for Effective Educator Development, Accreditation, and Reform (CEEDAR) Center. Part of this initiative was to hold a statewide summit for all Kentucky stakeholders in an attempt to build awareness of high leverage practices in educator preparation programs; strengthen and sustain partnerships; build capacity for continuous improvement; and share strategies for enhancing clinical practice. This article discusses the results of a survey given to those attending the statewide summit. Participants were asked to rate their knowledge and perceived importance of eight key variables associated with reimagining educator preparation in Kentucky. The results are discussed and next steps are outlined

    Prospective cohort study of procalcitonin levels in children with cancer presenting with febrile neutropenia

    Get PDF
    BACKGROUND: Febrile neutropenia (FNP) causes significant morbidity and mortality in children undergoing treatment for cancer. The development of clinical decision rules to help stratify risks in paediatric FNP patients and the use of inflammatory biomarkers to identify high risk patients is an area of recent research. This study aimed to assess if procalcitonin (PCT) levels could be used to help diagnose or exclude severe infection in children with cancer who present with febrile neutropenia, both as a single measurement and in addition to previously developed clinical decision rules. METHODS: This prospective cohort study of a diagnostic test included patients between birth and 18 years old admitted with febrile neutropenia to the Paediatric Oncology and Haematology Ward in Leeds between 1(st) October 2012 and 30(th) September 2013. Each admission with FNP was treated as a separate episode. Blood was taken for a procalcitonin level at admission with routine investigations. 'R' was used for statistical analysis. Likelihood ratios were calculated and multivariable logistic regression. RESULTS: Forty-eight episodes from 27 patients were included. PCT >2 ng/dL was strongly associated with increased risk of severe infection (likelihood ratio of 26 [95% CI 3.5, 190]). The data suggests that the clinical decision rules are largely ineffective at risk stratification, frequently over-stating the risk of individual episodes. High procalcitonin levels on admission are correlated with a greatly increased risk of severe infection. CONCLUSIONS: This study does not show a definitive benefit in using PCT in FNP though it supports further research on its use. The benefit of novel biomarkers has not been proven and before introducing new tests for patients it is important their benefit above existing features is proven, particularly due to the increasing importance of health economics

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore