72 research outputs found

    Intracranial massive subdural haematoma: a potentially serious consequence of diagnostic lumbar puncture

    Get PDF
    Intracranial subdural haematoma (SDH) is an exceptionally rare complication of lumbar puncture (LP) and cerebrospinal fluid (CSF) drainage. Post LP headache mostly has a benign course, but it can also be a manifestation of a potentially life-threatening complication such as SDH. Only a few cases has been reported in literature. We report a case of massive intracranial SDH in a young male following LP and CSF drainage

    Detection of rotor imbalance, including root cause, severity and location

    Get PDF
    This paper presents a new way of detecting imbalances on wind turbine rotors, by using a harmonic analysis of the rotor response in the fixed frame. The method is capable of distinguishing among different root causes of the imbalance. In addition, the imbalance severity and location, i.e. the affected blade, can be identified. The automatic classification of the imbalance problem is obtained by using a neural network. The performance of the method is illustrated with the help of different fault scenarios, within a high-fidelity simulation environment

    De novo 7p partial trisomy characterized by subtelomeric FISH and whole-genome array in a girl with mental retardation

    Get PDF
    Chromosome rearrangements involving telomeres have been established as one of the major causes of idiopathic mental retardation/developmental delay. This case of 7p partial trisomy syndrome in a 3-year-old female child presenting with developmental delay emphasizes the clinical relevance of cytogenetic diagnosis in the better management of genetic disorders. Application of subtelomeric FISH technique revealed the presence of interstitial telomeres and led to the ascertainment of partial trisomy for the distal 7p segment localized on the telomeric end of the short arm of chromosome 19. Whole-genome cytogenetic microarray-based analysis showed a mosaic 3.5 Mb gain at Xq21.1 besides the approximately 24.5 Mb gain corresponding to 7p15.3- > pter. The possible mechanisms of origin of the chromosomal rearrangement and the clinical relevance of trisomy for the genes lying in the critical regions are discussed

    The Cost Effectiveness of Levodopa-Carbidopa Intestinal Gel in the Treatment of Advanced Parkinson’s Disease in England

    Get PDF
    Background: Parkinson’s disease is a progressive neurodegenerative disease, which significantly impacts patients’ quality of life and is associated with high treatment and direct healthcare costs. In England, levodopa/carbidopa intestinal gel (LCIG) is indicated for the treatment of levodopa-responsive advanced Parkinson’s disease with troublesome motor fluctuations when available combinations of medicinal products are unsatisfactory. Objective: We aimed to determine the cost effectiveness of LCIG compared to the standard of care for patients with advanced Parkinson’s disease in England, using real-world data. Methods: A Markov model was adapted from previous published studies, using the perspective of the English National Health System and Personal and Social Services to evaluate the cost effectiveness of LCIG compared to standard of care in patients with advanced Parkinson’s disease over a 20-year time horizon. The model comprised 25 health states, defined by a combination of the Hoehn and Yahr scale, and waking time spent in OFF-time. The base case considered an initial cohort of patients with an Hoehn and Yahr score of ≥ 3, and > 4 h OFF-time. Standard of care comprised standard oral therapies, and a proportion of patients were assumed to be treated with subcutaneous apomorphine infusion or injection in addition to oral therapies. Efficacy inputs were based on LCIG clinical trials where possible. Resource use and utility values were based on results of a large-scale observational study, and costs were derived from the latest published UK data, valued at 2017 prices. The EuroQol five-dimensions-3-level (EQ-5D-3L) instrument was used to measure utilities. Costs and quality-adjusted life-years were discounted at 3.5%. Both deterministic and probabilistic sensitivity analyses were conducted. Results: Total costs and quality-adjusted life-years gained for LCIG vs standard of care were £586,832 vs £554,022, and 2.82 vs 1.43, respectively. The incremental cost-effectiveness ratio for LCIG compared to standard of care was £23,649/quality-adjusted life-year. Results were sensitive to the healthcare resource utilisation based on real-world data, and long-term efficacy of LCIG. Conclusions: The base-case incremental cost-effectiveness ratio was estimated to be within the acceptable thresholds for cost effectiveness considered for England

    A green bio-organic catalyst (taurine) promoted one-pot synthesis of (R/S)-2-thioxo-3,4-dihydropyrimidine(TDHPM)-5-carboxanilides: chiral investigations using circular dichroism and validation by computational approaches

    Get PDF
    Owing to the massive importance of dihydropyrimidine (DHPMs) scaffolds in the pharmaceutical industry and other areas, we developed an effective and sustainable one-pot reaction protocol for the synthesis of (R/S)-2-thioxo-DHPM-5-carboxanilides via the Biginelli-type cyclo-condensation reaction of aryl aldehydes, thiourea and various acetoacetanilide derivatives in ethanol at 100 °C. In this protocol, taurine was used as a green and reusable bio-organic catalyst. Twenty-three novel derivatives of (R/S)-TDHPM-5-carboxanilides and their structures were confirmed by various spectroscopy techniques. The aforementioned compounds were synthesized via the formation of one asymmetric centre, one new C–C bond, and two new C–N bonds in the final product. All the newly synthesized compounds were obtained in their racemic form with up to 99% yield. In addition, the separation of the racemic mixture of all the newly synthesized compounds was carried out by chiral HPLC (Prep LC), which provided up to 99.99% purity. The absolute configuration of all the enantiomerically pure isomers was determined using a circular dichroism study and validated by a computational approach. With up to 99% yield of 4d, this one-pot synthetic approach can also be useful for large-scale industrial production. One of the separated isomers (4R)-(+)-4S developed as a single crystal, and it was found that this crystal structure was orthorhombic

    Oxide Dispersion Strengthened Nickel Based Alloys via Spark Plasma Sintering

    Get PDF
    Oxide dispersion strengthened (ODS) nickel based alloys were developed via mechanical milling and spark plasma sintering (SPS) of Ni–20Cr powder with additional dispersion of 1.2 wt% Y2O3 powder. Furthermore, 5 wt% Al2O3 was added to Ni–20Cr–1.2Y2O3 to provide composite strengthening in the ODS alloy. The effects of milling times, sintering temperature, and sintering dwell time were investigated on both mechanical properties and microstructural evolution. A high number of annealing twins was observed in the sintered microstructure for all the milling times. However, longer milling time contributed to improved hardness and narrower twin width in the consolidated alloys. Higher sintering temperature led to higher fraction of recrystallized grains, improved density and hardness. Adding 1.2 wt% Y2O3 to Ni–20Cr matrix significantly reduced the grain size due to dispersion strengthening effect of Y2O3 particles in controlling the grain boundary mobility and recrystallization phenomena. The strengthening mechanisms at room temperature were quantified based on both experimental and analytical calculations with a good agreement. A high compression yield stress obtained at 800 °C for Ni–20Cr–1.2Y2O3–5Al2O3 alloy was attributed to a combined effect of dispersion and composite strengthening

    Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Get PDF
    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method

    Use of Fick's law and Maxwell–Stefan equations in computation of multicomponent diffusion

    No full text
    This article does not have an abstract

    Modeling of backmixing in continuous polymerization of caprolactam in VK column reactors

    No full text
    This article does not have an abstract
    corecore