1,509 research outputs found

    Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    Get PDF
    The Yablonskii-Vorob'ev polynomials yn(t)y_{n}(t), which are defined by a second order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painlev\'{e} equation (PIIP_{II}). Here we define two-variable polynomials Yn(t,h)Y_{n}(t,h) on a lattice with spacing hh, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h=0h=0. They also provide rational solutions for a particular discretisation of PIIP_{II}, namely the so called {\it alternate discrete} PIIP_{II}, and this connection leads to an expression in terms of the Umemura polynomials for the third Painlev\'{e} equation (PIIIP_{III}). It is shown that B\"{a}cklund transformation for the alternate discrete Painlev\'{e} equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete PIIP_{II}, which recovers Jimbo and Miwa's Lax pair for PIIP_{II} in the continuum limit h→0h\to 0.Comment: 23 pages, IOP style. Title changed, and connection with Umemura polynomials adde

    Bilinear Discrete Painleve-II and its Particular Solutions

    Full text link
    By analogy to the continuous Painlev\'e II equation, we present particular solutions of the discrete Painlev\'e II (d-PII\rm_{II}) equation. These solutions are of rational and special function (Airy) type. Our analysis is based on the bilinear formalism that allows us to obtain the Ï„\tau function for d-PII\rm_{II}. Two different forms of bilinear d-PII\rm_{II} are obtained and we show that they can be related by a simple gauge transformation.Comment: 9 pages in plain Te

    On a q-difference Painlev\'e III equation: I. Derivation, symmetry and Riccati type solutions

    Full text link
    A q-difference analogue of the Painlev\'e III equation is considered. Its derivations, affine Weyl group symmetry, and two kinds of special function type solutions are discussed.Comment: arxiv version is already officia

    Nambu-Hamiltonian flows associated with discrete maps

    Full text link
    For a differentiable map (x1,x2,...,xn)→(X1,X2,...,Xn)(x_1,x_2,..., x_n)\to (X_1,X_2,..., X_n) that has an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of the initial value, say xnx_n, of the map plays the role of time variable while the others remain fixed. We present various examples which exhibit the map-flow correspondence.Comment: 19 page

    Nucleotide Sequence of a Soybean (Glycine max L. Merr.) Ubiquitin Gene

    Full text link

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information
    • …
    corecore