993 research outputs found

    Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor

    Get PDF
    We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground states. In the latter, spatially resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and to probe their topological properties

    Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se

    Full text link
    Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb1−x_{1-x}Snx_{x}Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb0.77_{0.77}Sn0.23_{0.23}Se and PbSe have different topological nature.Comment: 5 pages, 4 figure

    Chemical evolution of primary and formation of secondary biomass burning aerosols during daytime and nighttime

    Get PDF
    Organic matter (OM) can constitute more than half of fine particulate matter (PM) and affect climate and human health. Natural and man-made biomass burning is an important contributor to primary and secondary OM (POA and SOA) with an increasing trend. Aerosol mass spectrometry (AMS) and Fourier transform infrared spectroscopy (FTIR) are two complementary methods of identifying the complex chemical composition of OM in terms of mass fragments and functional groups, respectively. AMS offers a relatively higher temporal resolution compared to FTIR (performed on PTFE filters). However, the interpretation of AMS mass spectra remains complicated due to the extensive molecular fragmentation. In this study, we used collocated AMS and FTIR measurements to better understand the evolution of biomass burning POA and SOA due to different mechanisms of chemical aging (e.g., homogeneous gasphase oxidation and heterogeneous reactions). Primary emissions from wood and pellet stoves were injected into a 10 m3 environmental chamber located at the Center for Studies of Air Qualities and Climate Change (CSTACC) at ICE-HT/FORTH. Primary emissions were aged using hydroxyl and nitrate radicals with atmospherically relevant exposures. PM1 was analyzed by a highresolution time-of-flight (HR-ToF) and was also collected on PTFE filters over 20-minute periods before and after aging for off-line FTIR analysis. AMS and FTIR measurements agreed well with regards to the concentration of OM and some biomass burning tracers (levoglucosan and lignin; Yazdani A., 2020b) and the OM:OC ratio. Chamber wall loss rates were estimated using AMS OM concentration and were used to split the contribution of POA and SOA. The estimated FTIR and AMS spectra of SOA produced by reactions of biomass burning volatile organic compounds (VOCs) with OH were found to have prominent acid signatures. Organonitrates, on the other hand, appeared to be important for SOA produced by the nitrate radical. We found that with continued aging, SOA evolves and becomes similar to the oxygenated OA (OOA) in the atmosphere. We also found that POA composition also evolves with aging. Our estimates show that up to 10 % of POA mass undergoes aging. Biomass burning tracers such as lignin and levoglucosan in addition to hydrocarbons are among the POA compounds that are lost the most in biomass burning POA (up to 6 times more than OM decrease due to chamber wall losses; Fig. 1). This diminution is observed for both semi-volatile (levoglucosan and hydrocarbons) and non-volatile (lignin) POA species, implying the importance of gasparticle partitioning, heterogeneous reactions, and photolysis for POA evolution in the atmosphere. This result can be important since chemical transport models usually do not consider POA heterogeneous reactions. Figure 1. Trends of individual AMS mass fragments (with contribution to OM> 0.3 %) during aging with UV (starting from time zero). All mass fragments have been normalized by their concentration before the with start of aging and corrected for the chamber wall losses. Important mass fragments are shown in color. This work was supported by the project PyroTRACH (ERC- 2016-COG) funded from H2020-EU.1.1. - Excellent Science - European Research Council (ERC), project ID 726165 and funding from the Swiss National Science Foundation (200021_172923). References Yazdani, A., Dudani, N., Takahama, S., Bertrand, A., Prévôt, A. S. H., El Haddad, I., and Dillner, A. M.: Characterization of Primary and Aged Wood Burning and Coal Combustion Organic Aerosols in Environmental Chamber and Its Implications for Atmospheric Aerosols, Atmospheric Chemistry and Physics Discussions, pp. 1– 32

    Differentiating between primary and secondary organic aerosols of biomass burning in an environmental chamber with FTIR and AMS

    Get PDF
    Fine particulate matter (PM) affects visibility, climate and public health. Organic matter (OM), which is hard to characterize due to its complex chemical composition, can constitute more than half of the PM. Biomass burning from residential wood burning, wildfires, and prescribed burning is a major source of OM with an ever-increasing importance. Aerosol mass spectrometry (AMS) and Fourier transform infrared spectroscopy (FTIR) are two complementary methods of identifying the chemical composition of OM. AMS measures the bulk composition of OM with relatively high temporal resolution but provides limited parent compound information. FTIR, carried out on samples collected on Teflon filters, provides detailed functional groupinformation at the expense of relatively low temporal resolution. In this study, we used these two methods to better understand the evolution of biomass burning OM in the atmosphere with aging. For this purpose, primary emissions from wood and pellet stoves were injected into the Center for Studies of Air Qualities and Climate Change (C-STACC) environmental chamber at ICE-HT/FORTH. Primary emissions were aged using hydroxyl and nitrate radicals (with atmospherically relevant exposures) simulating atmospheric day-time and night-time oxidation. A time-of-flight (ToF) AMS reported the composition of non-refractory PM1 every three minutes and PM1 was collected on PTFE filters over 20-minute periods before and after aging for off-line FTIR analysis. We found that AMS and FTIR measurements agreed well in terms of measured OM mass concentration, the OM:OC ratio, and concentration of biomass burning tracers – lignin and levoglucosan. AMS OM concentration was used to estimate chamber wall loss rates which were then used separate the contribution of primary and secondary organic aerosols (POA and SOA) to the aged OM. AMS mass spectra and FTIR spectra of biomass burning SOA and estimates of bulk composition were obtained by this procedure. FTIR and AMS spectra of SOA produced by OH oxidation of biomass burning volatile organic compounds (VOCs) were dominated by acid signatures. Organonitrates, on the other hand, appeared to be important in the SOA aged by the nitrate radical. The spectra from the two instruments also indicated that the signatures of certain compounds such as levoglucosan, lignin and hydrocarbons, which are abundant in biomass burning POA, diminish with aging significantly more than what can be attributed to chamber wall losses. The latter suggests biomass burning POA chemical composition might change noticeably due to heterogeneous reactions or partitioning in the atmosphere. Therefore, the common assumption of stable POA composition is only partially true. In addition, more stable biomass burning tracers should be used to be able to identify highly aged biomass burning aerosols in the atmosphere

    Open Vocabulary Extreme Classification Using Generative Models

    Get PDF
    The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels-as is the case in zero-shot classification-models need to invent some labels on-the-fly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels

    Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime

    Get PDF
    Primary emissions from wood and pellet stoves were aged in an atmospheric simulation chamber under daytime and nighttime conditions. The aerosol was analyzed with the online Aerosol Mass Spectrometer (AMS) and offline Fourier transform infrared spectroscopy (FTIR). Measurements using the two techniques agreed reasonably well in terms of the organic aerosol (OA) mass concentration, OA:OC trends, and concentrations of biomass burning markers – lignin-like compounds and anhydrosugars. Based on the AMS, around 15 % of the primary organic aerosol (POA) mass underwent some form of transformation during daytime oxidation conditions after 6–10 hours of atmospheric exposure. A lesser extent of transformation was observed during the nighttime oxidation. The decay of certain semi-volatile (e.g., levoglucosan) and less volatile (e.g., lignin-like) POA components was substantial during aging, highlighting the role of heterogeneous reactions and gas-particle partitioning. Lignin-like compounds were observed to degrade under both daytime and nighttime conditions, whereas anhydrosugars degraded only under daytime conditions. Among the marker mass fragments of primary biomass burning OA (bbPOA), heavy ones (higher m/z) were relatively more stable during aging. The biomass burning secondary OA (bbSOA) became more oxidized with continued aging and resembled those of aged atmospheric organic aerosols. The bbSOA formed during daytime oxidation was dominated by acids. Organonitrates were an important product of nighttime reactions in both humid and dry conditions. Our results underline the importance of changes to both the primary and secondary biomass burning aerosols during their atmospheric aging. Heavier AMS fragments seldomly used in atmospheric chemistry can be used as more stable tracers of bbPOA and in combination with the established levoglucosan marker, can provide an indication of the extent of bbPOA aging
    • …
    corecore