999 research outputs found

    The Degenerate Parametric Oscillator and Ince's Equation

    Full text link
    We construct Green's function for the quantum degenerate parametric oscillator in terms of standard solutions of Ince's equation in a framework of a general approach to harmonic oscillators. Exact time-dependent wave functions and their connections with dynamical invariants and SU(1,1) group are also discussed.Comment: 10 pages, no figure

    The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity

    Get PDF
    We describe a six-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding photons statistics are discussed and some applications to quantum optics, cavity quantum electrodynamics, and superfocusing in channeling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys., Special Issue celebrating the 20th anniversary of quantum state engineering (R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201

    Renormalization Group Functions for Two-Dimensional Phase Transitions: To the Problem of Singular Contributions

    Full text link
    According to the available publications, the field theoretical renormalization group (RG) approach in the two-dimensional case gives the critical exponents that differ from the known exact values. This fact was attempted to explain by the existence of nonanalytic contributions in the RG functions. The situation is analysed in this work using a new algorithm for summing divergent series that makes it possible to analyse dependence of the results for the critical exponents on the expansion coefficients for RG functions. It has been shown that the exact values of all the exponents can be obtained with a reasonable form of the coefficient functions. These functions have small nonmonotonities or inflections, which are poorly reproduced in natural interpolations. It is not necessary to assume the existence of singular contributions in RG functions.Comment: PDF, 11 page

    Scaling near the upper critical dimensionality in the localization theory

    Full text link
    The phenomenon of upper critical dimensionality d_c2 has been studied from the viewpoint of the scaling concepts. The Thouless number g(L) is not the only essential variable in scale transformations, because there is the second parameter connected with the off-diagonal disorder. The investigation of the resulting two-parameter scaling has revealed two scenarios, and the switching from one to another scenario determines the upper critical dimensionality. The first scenario corresponds to the conventional one-parameter scaling and is characterized by the parameter g(L) invariant under scale transformations when the system is at the critical point. In the second scenario, the Thouless number g(L) grows at the critical point as L^{d-d_c2}. This leads to violation of the Wegner relation s=\nu(d-2) between the critical exponents for conductivity (s) and for localization radius (\nu), which takes the form s=\nu(d_c2-2). The resulting formulas for g(L) are in agreement with the symmetry theory suggested previously [JETP 81, 925 (1995)]. A more rigorous version of Mott's argument concerning localization due topological disorder has been proposed.Comment: PDF, 7 pages, 6 figure

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Triviality problem and the high-temperature expansions of the higher susceptibilities for the Ising and the scalar field models on four-, five- and six-dimensional lattices

    Get PDF
    High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude-ratios which determine the critical equation of state. We have obtained a substantial extension through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s >= 1/2 and for the lattice scalar field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic lattices in four, five and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions, yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction ("triviality") property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.Comment: 17 pages, 10 figure

    Gell-Mann - Low Function for QCD in the strong-coupling limit

    Get PDF
    The Gell-Mann - Low function \beta(g) in QCD (g=g0^2/16\pi^2 where g0 is the coupling constant in the Lagrangian) is shown to behave in the strong-coupling region as \beta_\infty g^\alpha with \alpha\approx -13, \beta_\infty\sim 10^5.Comment: 5 pages, PD

    The q-harmonic oscillator and an analog of the Charlier polynomials

    Full text link
    A model of a q-harmonic oscillator based on q-Charlier polynomials of Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an analog of the Fourier transformation are found. A connection of the kernel of this transform with biorthogonal rational functions is observed

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio
    • …
    corecore