24,939 research outputs found
Non-rotating and rotating neutron stars in the extended field theoretical model
We study the properties of non-rotating and rotating neutron stars for a new
set of equations of state (EOSs) with different high density behaviour obtained
using the extended field theoretical model. The high density behaviour for
these EOSs are varied by varying the meson self-coupling and
hyperon-meson couplings in such a way that the quality of fit to the bulk
nuclear observables, nuclear matter incompressibility coefficient and
hyperon-nucleon potential depths remain practically unaffected. We find that
the largest value for maximum mass for the non-rotating neutron star is
. The radius for the neutron star with canonical mass is km provided only those EOSs are considered for which maximum mass is
larger than as it is the lower bound on the maximum mass measured
so far. Our results for the very recently discovered fastest rotating neutron
star indicate that this star is supra massive with mass and
circumferential equatorial radius km.Comment: 28 pages, 12 figures. Phys. Rev. C (in press
Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields
We investigate medium effects due to density-dependent magnetic moments of
baryons on neutron stars under strong magnetic fields. If we allow the
variation of anomalous magnetic moments (AMMs) of baryons in dense matter under
strong magnetic fields, AMMs of nucleons are enhanced to be larger than those
of hyperons. The enhancement naturally affects the chemical potentials of
baryons to be large and leads to the increase of a proton fraction.
Consequently, it causes the suppression of hyperons, resulting in the stiffness
of the equation of state. Under the presumed strong magnetic fields, we
evaluate relevant particles' population, the equation of state and the maximum
masses of neutron stars by including density-dependent AMMs and compare them
with those obtained from AMMs in free space
Next to leading order non Fermi liquid corrections to the neutrino emissivity and cooling of the neutron star
In this work we derive the expressions of the neutrino mean free path(MFP)
and emissivity with non Fermi liquid corrections up to next to leading
order(NLO) in degenerate quark matter. The calculation has been performed both
for the absorption and scattering processes. Subsequently the role of these NLO
corrections on the cooling of the neutron star has been demonstrated. The
cooling curve shows moderate enhancement compared to the leading order(LO)
non-Fermi liquid result. Although the overall correction to the MFP and
emissivity are larger compared to the free Fermi gas, the cooling behavior does
not alter significantly.Comment: 8 pages, 8 figures, references added, matches published versio
Transition from spot to faculae domination -- An alternate explanation for the dearth of intermediate \textit{Kepler} rotation periods
The study of stellar activity cycles is crucial to understand the underlying
dynamo and how it causes activity signatures such as dark spots and bright
faculae. We study the appearance of activity signatures in contemporaneous
photometric and chromospheric time series. Lomb-Scargle periodograms are used
to search for cycle periods present in both time series. To emphasize the
signature of the activity cycle we account for rotation-induced scatter in both
data sets by fitting a quasi-periodic Gaussian process model to each observing
season. After subtracting the rotational variability, cycle amplitudes and the
phase difference between the two time series are obtained by fitting both time
series simultaneously using the same cycle period. We find cycle periods in 27
of the 30 stars in our sample. The phase difference between the two time series
reveals that the variability in fast rotating active stars is usually in
anti-phase, while the variability of slowly rotating inactive stars is in
phase. The photometric cycle amplitudes are on average six times larger for the
active stars. The phase and amplitude information demonstrates that active
stars are dominated by dark spots, whereas less active stars are dominated by
bright faculae. We find the transition from spot to faculae domination at the
Vaughan-Preston gap, and around a Rossby number equal to one. We conclude that
faculae are the dominant ingredient of stellar activity cycles at ages >2.55
Gyr. The data further suggest that the Vaughan-Preston gap can not explain the
previously detected dearth of Kepler rotation periods between 15-25 days.
Nevertheless, our results led us to propose an explanation for the rotation
period dearth to be due to the non-detection of periodicity caused by the
cancellation of dark spots and bright faculae at 800 Myr.Comment: 12+15 pages, 10+2 figures, accepted for publication in A&
Correlations in the properties of static and rapidly rotating compact stars
Correlations in the properties of the static compact stars (CSs) and the ones
rotating with the highest observed frequency of 1122Hz are studied using a
large set of equations of state (EOSs). These EOSs span various approaches and
their chemical composition vary from the nucleons to hyperons and quarks in
-equilibrium. It is found that the properties of static CS, like, the
maximum gravitational mass and radius corresponding to t he canonical mass and supramassive or
non-supramassive nature of the CS rotating at 1122 Hz are strongly correlated.
In particular, only those EOSs yield the CS rotating at 1122Hz to be
non-supramassive for which \left (\frac{M_{\rm max}^{\rm stat}}{M_\odot}\right
)^{1/2} \left (\frac{10{\rm km}}{R_{1.4}^{\rm stat}})^{3/2} is greater than
unity. Suitable parametric form which can be used to split the plane into the regions of different
supramassive nature of the CS rotating at 1122Hz is presented. Currently
measured maximum gravitational mass 1.76 of PSR J0437-4715 suggests
that the CS rotating at 1122Hz can be non-supramassive provided km.Comment: 13 pages, 4 figures, Appearing in Phys. Rev.
The role of the Fraunhofer lines in solar brightness variability
The solar brightness varies on timescales from minutes to decades. A clear
identification of the physical processes behind such variations is needed for
developing and improving physics-based models of solar brightness variability
and reconstructing solar brightness in the past. This is, in turn, important
for better understanding the solar-terrestrial and solar-stellar connections.
We estimate the relative contributions of the continuum, molecular, and
atomic lines to the solar brightness variations on different timescales.
Our approach is based on the assumption that variability of the solar
brightness on timescales greater than a day is driven by the evolution of the
solar surface magnetic field. We calculated the solar brightness variations
employing the solar disc area coverage of magnetic features deduced from the
MDI/SOHO observations. The brightness contrasts of magnetic features relative
to the quiet Sun were calculated with a non-LTE radiative transfer code as
functions of disc position and wavelength. By consecutive elimination of
molecular and atomic lines from the radiative transfer calculations, we
assessed the role of these lines in producing solar brightness variability.
We show that the variations in Fraunhofer lines define the amplitude of the
solar brightness variability on timescales greater than a day and even the
phase of the total solar irradiance variability over the 11-year cycle. We also
demonstrate that molecular lines make substantial contribution to solar
brightness variability on the 11-year activity cycle and centennial timescales.
In particular, our model indicates that roughly a quarter of the total solar
irradiance variability over the 11-year cycle originates in molecular lines.
The maximum of the absolute spectral brightness variability on timescales
greater than a day is associated with the CN violet system between 380 and 390
nm.Comment: 9 pages, 4 figures, accepted for publication in
Astronomy&Astrophysic
From Solar to Stellar Brightness Variations: The Effect of Metallicity
Context. Comparison studies of Sun-like stars with the Sun suggest an
anomalously low photometric variability of the Sun compared to Sun-like stars
with similar magnetic activity. Comprehensive understanding of stellar
variability is needed, to find a physical reasoning for this observation. Aims.
We investigate the effect of metallicity and effective temperature on the
photometric brightness change of Sun-like stars seen at different inclinations.
The considered range of fundamental stellar parameters is sufficiently small so
the stars, investigated here, still count as Sun-like or even as solar twins.
Methods. To model the brightness change of stars with solar magnetic activity,
we extend a well established model of solar brightness variations, SATIRE
(which stands for Spectral And Total Irradiance Reconstruction), which is based
on solar spectra, to stars with different fundamental parameters. For that we
calculate stellar spectra for different metallicities and effective temperature
using the radiative transfer code ATLAS9. Results. We show that even a small
change (e.g. within the observational error range) of metallicity or effective
temperature significantly affects the photometric brightness change compared to
the Sun. We find that for Sun-like stars, the amplitude of the brightness
variations obtained for Str\"omgren (b + y)/2 reaches a local minimum for
fundamental stellar parameters close to the solar metallicity and effective
temperature. Moreover, our results show that the effect of inclination
decreases for metallicity values greater than the solar metallicity. Overall,
we find that an exact determination of fundamental stellar parameters is
crucially important for understanding stellar brightness changes.Comment: 12 pages, 12 figures, accepted in A&
- …