24,939 research outputs found

    Non-rotating and rotating neutron stars in the extended field theoretical model

    Full text link
    We study the properties of non-rotating and rotating neutron stars for a new set of equations of state (EOSs) with different high density behaviour obtained using the extended field theoretical model. The high density behaviour for these EOSs are varied by varying the ω\omega-meson self-coupling and hyperon-meson couplings in such a way that the quality of fit to the bulk nuclear observables, nuclear matter incompressibility coefficient and hyperon-nucleon potential depths remain practically unaffected. We find that the largest value for maximum mass for the non-rotating neutron star is 2.1M2.1M_\odot. The radius for the neutron star with canonical mass is 12.814.112.8 - 14.1 km provided only those EOSs are considered for which maximum mass is larger than 1.6M1.6M_\odot as it is the lower bound on the maximum mass measured so far. Our results for the very recently discovered fastest rotating neutron star indicate that this star is supra massive with mass 1.72.7M1.7 - 2.7M_\odot and circumferential equatorial radius 121912 - 19 km.Comment: 28 pages, 12 figures. Phys. Rev. C (in press

    Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields

    Full text link
    We investigate medium effects due to density-dependent magnetic moments of baryons on neutron stars under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons. The enhancement naturally affects the chemical potentials of baryons to be large and leads to the increase of a proton fraction. Consequently, it causes the suppression of hyperons, resulting in the stiffness of the equation of state. Under the presumed strong magnetic fields, we evaluate relevant particles' population, the equation of state and the maximum masses of neutron stars by including density-dependent AMMs and compare them with those obtained from AMMs in free space

    Next to leading order non Fermi liquid corrections to the neutrino emissivity and cooling of the neutron star

    Full text link
    In this work we derive the expressions of the neutrino mean free path(MFP) and emissivity with non Fermi liquid corrections up to next to leading order(NLO) in degenerate quark matter. The calculation has been performed both for the absorption and scattering processes. Subsequently the role of these NLO corrections on the cooling of the neutron star has been demonstrated. The cooling curve shows moderate enhancement compared to the leading order(LO) non-Fermi liquid result. Although the overall correction to the MFP and emissivity are larger compared to the free Fermi gas, the cooling behavior does not alter significantly.Comment: 8 pages, 8 figures, references added, matches published versio

    Transition from spot to faculae domination -- An alternate explanation for the dearth of intermediate \textit{Kepler} rotation periods

    Full text link
    The study of stellar activity cycles is crucial to understand the underlying dynamo and how it causes activity signatures such as dark spots and bright faculae. We study the appearance of activity signatures in contemporaneous photometric and chromospheric time series. Lomb-Scargle periodograms are used to search for cycle periods present in both time series. To emphasize the signature of the activity cycle we account for rotation-induced scatter in both data sets by fitting a quasi-periodic Gaussian process model to each observing season. After subtracting the rotational variability, cycle amplitudes and the phase difference between the two time series are obtained by fitting both time series simultaneously using the same cycle period. We find cycle periods in 27 of the 30 stars in our sample. The phase difference between the two time series reveals that the variability in fast rotating active stars is usually in anti-phase, while the variability of slowly rotating inactive stars is in phase. The photometric cycle amplitudes are on average six times larger for the active stars. The phase and amplitude information demonstrates that active stars are dominated by dark spots, whereas less active stars are dominated by bright faculae. We find the transition from spot to faculae domination at the Vaughan-Preston gap, and around a Rossby number equal to one. We conclude that faculae are the dominant ingredient of stellar activity cycles at ages >2.55 Gyr. The data further suggest that the Vaughan-Preston gap can not explain the previously detected dearth of Kepler rotation periods between 15-25 days. Nevertheless, our results led us to propose an explanation for the rotation period dearth to be due to the non-detection of periodicity caused by the cancellation of dark spots and bright faculae at 800 Myr.Comment: 12+15 pages, 10+2 figures, accepted for publication in A&

    Correlations in the properties of static and rapidly rotating compact stars

    Full text link
    Correlations in the properties of the static compact stars (CSs) and the ones rotating with the highest observed frequency of 1122Hz are studied using a large set of equations of state (EOSs). These EOSs span various approaches and their chemical composition vary from the nucleons to hyperons and quarks in β\beta-equilibrium. It is found that the properties of static CS, like, the maximum gravitational mass MmaxstatM_{\rm max}^{\rm stat} and radius R1.4statR_{1.4}^{\rm stat} corresponding to t he canonical mass and supramassive or non-supramassive nature of the CS rotating at 1122 Hz are strongly correlated. In particular, only those EOSs yield the CS rotating at 1122Hz to be non-supramassive for which \left (\frac{M_{\rm max}^{\rm stat}}{M_\odot}\right )^{1/2} \left (\frac{10{\rm km}}{R_{1.4}^{\rm stat}})^{3/2} is greater than unity. Suitable parametric form which can be used to split the MmaxstatM_{\rm max}^{\rm stat} - R1.4statR_{1.4}^{\rm stat} plane into the regions of different supramassive nature of the CS rotating at 1122Hz is presented. Currently measured maximum gravitational mass 1.76MM_\odot of PSR J0437-4715 suggests that the CS rotating at 1122Hz can be non-supramassive provided R1.4stat12.4R_{1.4}^{\rm stat} \leqslant 12.4 km.Comment: 13 pages, 4 figures, Appearing in Phys. Rev.

    The role of the Fraunhofer lines in solar brightness variability

    Full text link
    The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.Comment: 9 pages, 4 figures, accepted for publication in Astronomy&Astrophysic

    From Solar to Stellar Brightness Variations: The Effect of Metallicity

    Full text link
    Context. Comparison studies of Sun-like stars with the Sun suggest an anomalously low photometric variability of the Sun compared to Sun-like stars with similar magnetic activity. Comprehensive understanding of stellar variability is needed, to find a physical reasoning for this observation. Aims. We investigate the effect of metallicity and effective temperature on the photometric brightness change of Sun-like stars seen at different inclinations. The considered range of fundamental stellar parameters is sufficiently small so the stars, investigated here, still count as Sun-like or even as solar twins. Methods. To model the brightness change of stars with solar magnetic activity, we extend a well established model of solar brightness variations, SATIRE (which stands for Spectral And Total Irradiance Reconstruction), which is based on solar spectra, to stars with different fundamental parameters. For that we calculate stellar spectra for different metallicities and effective temperature using the radiative transfer code ATLAS9. Results. We show that even a small change (e.g. within the observational error range) of metallicity or effective temperature significantly affects the photometric brightness change compared to the Sun. We find that for Sun-like stars, the amplitude of the brightness variations obtained for Str\"omgren (b + y)/2 reaches a local minimum for fundamental stellar parameters close to the solar metallicity and effective temperature. Moreover, our results show that the effect of inclination decreases for metallicity values greater than the solar metallicity. Overall, we find that an exact determination of fundamental stellar parameters is crucially important for understanding stellar brightness changes.Comment: 12 pages, 12 figures, accepted in A&
    corecore