2,816 research outputs found

    Changes in union membership over time : a panel analysis for West Germany

    Get PDF
    Despite the apparent stability of the wage bargaining institutions in West Germany, aggregate union membership has been declining dramatically since the early 90's. However, aggregate gross membership numbers do not distinguish by employment status and it is impossible to disaggregate these sufficiently. This paper uses four waves of the German Socioeconomic Panel in 1985, 1989, 1993, and 1998 to perform a panel analysis of net union membership among employees. We estimate a correlated random effects probit model suggested in Chamberlain (1984) to take proper account of individual specfic effects. Our results suggest that at the individual level the propensity to be a union member has not changed considerably over time. Thus, the aggregate decline in membership is due to composition effects. We also use the estimates to predict net union density at the industry level based on the IAB employment subsample for the time period 1985 to 1997. JEL - Klassifikation: J

    Quantum engineering of squeezed states for quantum communication and metrology

    Get PDF
    We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.Comment: 12 pages, 3 figure

    The GEO600 squeezed light source

    Full text link
    The next upgrade of the GEO600 gravitational wave detector is scheduled for 2010 and will, in particular, involve the implementation of squeezed light. The required non-classical light source is assembled on a 1.5m^2 breadboard and includes a full coherent control system and a diagnostic balanced homodyne detector. Here, we present the first experimental characterization of this setup as well as a detailed description of its optical layout. A squeezed quantum noise of up to 9dB below the shot-noise level was observed in the detection band between 10Hz and 10kHz. We also present an analysis of the optical loss in our experiment and provide an estimation of the possible non-classical sensitivity improvement of the future squeezed light enhanced GEO600 detector.Comment: 8 pages, 4 figure

    Squeezed light at sideband frequencies below 100 kHz from a single OPA

    Full text link
    Quantum noise of the electromagnetic field is one of the limiting noise sources in interferometric gravitational wave detectors. Shifting the spectrum of squeezed vacuum states downwards into the acoustic band of gravitational wave detectors is therefore of challenging demand to quantum optics experiments. We demonstrate a system that produces nonclassical continuous variable states of light that are squeezed at sideband frequencies below 100 kHz. A single optical parametric amplifier (OPA) is used in an optical noise cancellation scheme providing squeezed vacuum states with coherent bright phase modulation sidebands at higher frequencies. The system has been stably locked for half an hour limited by thermal stability of our laboratory.Comment: 3 pages, 3 figure

    Test of Lorentz Symmetry by using a 3He/129Xe Co-Magnetometer

    Full text link
    To test Lorentz symmetry we used a 3He/129Xe co-magnetometer. We will give a short summary of our experimental setup and the results of our latest measurements. We obtained preliminary results for the equatorial component of the background field interacting with the spin of the bound neutron: b_n < 3.72 x 10^(-32) GeV (95 C.L.).Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28 - July 2, 201

    Crash and Durability of Aluminum and Mixed Steel Aluminum Joints Made by Electromagnetic Pulse Welding

    Get PDF
    In this paper, results of the research project “Failure behavior of mixed weld joints under multi-axial crash-like and cyclic loads on the example of EMPT sheet metal joints” funded by the German Federal Ministry for Economic Affairs and Energy are presented and discussed. Aluminum and mixed aluminum-steel joints were prepared using electromagnetic pulse technology (EMPT) at PSTproducts GmbH (PST). Investigations on coupon samples were performed under oscillating and monotone (crash) loadings until failure. Based on the coupon tests, parameters for modelling the crash performance were derived, using both a detailed continuum model and an application driven simplified FE-model. The derived FE-modelling concept for crash behavior was validated by comparison of component tests and simulations Durability analysis of the joint specimens was performed combined with FEM analysis, applying the notch stress concept. For the notch stress concept a notch model with a reference radius of rref=0.05 mm was used for the FE-simulations. The endurable notch stresses were compared to reference S-N curves derived for conventional welded samples. The EMPT-results fit well in the scatter band of the conventional laser-welded joints. This is the verification that the notch stress concept can be successfully applied also for EMPT joints

    Limit on Lorentz and CPT violation of the bound Neutron Using a Free Precession 3He/129Xe co-magnetometer

    Full text link
    We report on the search for Lorentz violating sidereal variations of the frequency difference of co-located spin-species while the Earth and hence the laboratory reference frame rotates with respect to a relic background field. The co-magnetometer used is based on the detection of freely precessing nuclear spins from polarized 3He and 129Xe gas samples using SQUIDs as low-noise magnetic flux detectors. As result we can determine the limit for the equatorial component of the background field interacting with the spin of the bound neutron to be bn < 3.7 x 10^{-32} GeV (95 C.L.).Comment: 5 pages, 4 figure

    Squeezed-field injection for gravitational wave interferometers

    Get PDF
    In a recent table-top experiment, we demonstrated the compatibility of three advanced interferometer techniques for gravitational wave detection, namely power-recycling, detuned signal recycling and squeezed-field injection. The interferometer's signal-to-noise ratio was improved by up to 2.8 dB beyond the coherent state's shot-noise. This value was mainly limited by optical losses on the squeezed field. We present a detailed analysis of the optical losses in our experiment and provide an estimation of the possible nonclassical performance of a future squeezed-field enhanced GEO 600 detector

    Laser interferometry with translucent and absorbing mechanical oscillators

    Get PDF
    The sensitivity of laser interferometers can be pushed into regimes that enable the direct observation of quantum behaviour of mechanical oscillators. In the past, membranes with subwavelength thickness (thin films) have been proposed as high-mechanical-quality, low-thermal-noise oscillators. Thin films from a homogenous material, however, generally show considerable light transmission accompanied by heating due to light absorption, which typically reduces the mechanical quality and limits quantum opto-mechanical experiments in particular at low temperatures. In this work, we experimentally analyze a Michelson-Sagnac interferometer including a translucent silicon nitride (SiN) membrane with subwavelength thickness. We find that such an interferometer provides an operational point being optimally suited for quantum opto-mechanical experiments with translucent oscillators. In case of a balanced beam splitter of the interferometer, the membrane can be placed at a node of the electro-magnetic field, which simultaneously provides lowest absorption and optimum laser noise rejection at the signal port. We compare the optical and mechanical model of our interferometer with experimental data and confirm that the SiN membrane can be coupled to a laser power of the order of one Watt at 1064 nm without significantly degrading the membrane's quality factor of the order 10^6, at room temperature
    • …
    corecore