18,755 research outputs found

    Detecting gravitational waves from inspiraling binaries with a network of detectors : coherent versus coincident strategies

    Get PDF
    We compare two strategies of multi-detector detection of compact binary inspiral signals, namely, the coincidence and the coherent. For simplicity we consider here two identical detectors having the same power spectral density of noise, that of initial LIGO, located in the same place and having the same orientation. We consider the cases of independent noise as well as that of correlated noise. The coincident strategy involves separately making two candidate event lists, one for each detector, and from these choosing those pairs of events from the two lists which lie within a suitable parameter window, which then are called as coincidence detections. The coherent strategy on the other hand involves combining the data phase coherently, so as to obtain a single network statistic which is then compared with a single threshold. Here we attempt to shed light on the question as to which strategy is better. We compare the performances of the two methods by plotting the Receiver Operating Characteristics (ROC) for the two strategies. Several of the results are obtained analytically in order to gain insight. Further we perform numerical simulations in order to determine certain parameters in the analytic formulae and thus obtain the final complete results. We consider here several cases from the relatively simple to the astrophysically more relevant in order to establish our results. The bottom line is that the coherent strategy although more computationally expensive in general than the coincidence strategy, is superior to the coincidence strategy - considerably less false dismissal probability for the same false alarm probability in the viable false alarm regime.Comment: 18 pages, 10 figures, typo correcte

    Exploring the Origins of Earth's Nitrogen: Astronomical Observations of Nitrogen-bearing Organics in Protostellar Environments

    Full text link
    It is not known whether the original carriers of Earth's nitrogen were molecular ices or refractory dust. To investigate this question, we have used data and results of Herschel observations towards two protostellar sources: the high-mass hot core of Orion KL, and the low-mass protostar IRAS 16293-2422. Towards Orion KL, our analysis of the molecular inventory of Crockett et al. (2014) indicates that HCN is the organic molecule that contains by far the most nitrogen, carrying 749+5%74_{-9}^{+5}\% of nitrogen-in-organics. Following this evidence, we explore HCN towards IRAS 16293-2422, which we consider a solar analog. Towards IRAS 16293-2422, we have reduced and analyzed Herschel spectra of HCN, and fit these observations against "jump" abundance models of IRAS 16293-2422's protostellar envelope. We find an inner-envelope HCN abundance Xin=5.9±0.7×108X_{\textrm{in}} = 5.9\pm0.7 \times 10^{-8} and an outer-envelope HCN abundance Xout=1.3±0.1×109X_{\textrm{out}} = 1.3 \pm 0.1 \times 10^{-9}. We also find the sublimation temperature of HCN to be Tjump=71±3T_{\textrm{jump}} = 71 \pm 3~K; this measured TjumpT_{\textrm{jump}} enables us to predict an HCN binding energy EB/k=3840±140E_{\textrm{B}}/k = 3840 \pm 140~K. Based on a comparison of the HCN/H2O ratio in these protostars to N/H2O ratios in comets, we find that HCN (and, by extension, other organics) in these protostars is incapable of providing the total bulk N/H2O in comets. We suggest that refractory dust, not molecular ices, was the bulk provider of nitrogen to comets. However, interstellar dust is not known to have 15N enrichment, while high 15N enrichment is seen in both nitrogen-bearing ices and in cometary nitrogen. This may indicate that these 15N-enriched ices were an important contributor to the nitrogen in planetesimals and likely to the Earth.Comment: Accepted to ApJ; 21 pages, 4 figure

    Heterogeneous responses of dorsal root ganglion neurons in neuropathies induced by peripheral nerve trauma and the antiretroviral drug stavudine

    Get PDF
    © 2014 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®. Funding sources E.K.B. was funded by a BBSRC PhD studentship. A.N., A.S.C.R. and T.P. were funded by a Wellcome Trust Strategic Award (London Pain Consortium; ref. 083259). A.S.C.R. and W.H. were funded by the Innovative Medicines Initiative Joint Undertaking (Europain; grant agreement no. 115007). We thank Pfizer for providing stavudine. Conflicts of interest None declared. Funded by BBSRC PhD studentship Wellcome Trust Strategic Award. Grant Number: 083259 Innovative Medicines Initiative Joint Undertaking. Grant Number: 115007Peer reviewedPublisher PD

    On the Role of Global Warming on the Statistics of Record-Breaking Temperatures

    Full text link
    We theoretically study long-term trends in the statistics of record-breaking daily temperatures and validate these predictions using Monte Carlo simulations and data from the city of Philadelphia, for which 126 years of daily temperature data is available. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperatures distribution in Philadelphia, as a function of the number of elapsed years from the start of the data. We further consider the case of global warming, where the mean temperature systematically increases with time. We argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events over the time range of the observations, a conclusion that is supported by numerical simulations and the Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to Journal of Climate. Revised version has some new results and some errors corrected. Reformatted for Journal of Climate. Second revision has an added reference. In the third revision one sentence that explains the simulations is reworded for clarity. New revision 10/3/06 has considerable additions and new results. Revision on 11/8/06 contains a number of minor corrections and is the version that will appear in Phys. Rev.

    Anisotropic superexchange of a 90 degree Cu-O-Cu bond

    Full text link
    The magnetic anisotropy af a rectangular Cu-O-Cu bond is investigated in second order of the spin-orbit interaction. Such a bond is characteristic for cuprates having edge sharing CuO_2 chains, and exists also in the Cu_3O_4 plane or in ladder compounds. For a ferromagnetic coupling between the copper spins an easy axis is found perpendicular to the copper oxygen plaquettes in agreement with the experimental spin structure of Li_2CuO_2. In addition, a pseudo-dipolar interaction is derived. Its estimation in the case of the Cu_3O_4 plane (which is present for instance in Ba_2Cu_3O_4Cl_2 or Sr_2Cu_3O_4Cl_2) gives a value which is however two orders of magnitude smaller than the usual dipole-dipole interaction.Comment: 6 pages, 2 figures, improved referenc

    Single hole doped strongly correlated ladder with a static impurity

    Full text link
    We consider a strongly correlated ladder with diagonal hopping and exchange interactions described by tJt-J type hamiltonian. We study the dynamics of a single hole in this model in the presence of a static non-magnetic (or magnetic) impurity. In the case of a non-magnetic (NM) impurity we solve the problem analytically both in the triplet (S=1) and singlet (S=0) sectors. In the triplet sector the hole doesn't form any bound state with the impurity. However, in the singlet sector the hole forms bound states of different symmetries with increasing J/tJ/t values. Binding energies of those impurity-hole bound states are compared with the binding energy of a pair of holes in absence of any impurity. In the case of magnetic impurity the analytical eigenvalue equations are solved for a large (50 X 2) lattice. In this case also, with increasing J/tJ/t values, impurity-hole bound states of different symmetries are obtained. Binding of the hole with the impurity is favoured for the case of a ferromagnetic (FM) impurity than in the case of antiferromagnetic (AFM) impurity. However binding energy is found to be maximum for the NM impurity. Comparison of binding energies and various impurity-hole correlation functions indicates a pair breaking mechanism by NM impurity.Comment: 15 Pages, 6 figure

    Theory for high spin systems with orbital degeneracy

    Full text link
    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighbouring bonds interact antiferromagnetically. The possible relevance to the transition metal oxides are discussed.Comment: 4 page, three figures, to appear in Phys. Rev. Let
    corecore