12,019 research outputs found
Runtime Distributions and Criteria for Restarts
Randomized algorithms sometimes employ a restart strategy. After a certain
number of steps, the current computation is aborted and restarted with a new,
independent random seed. In some cases, this results in an improved overall
expected runtime. This work introduces properties of the underlying runtime
distribution which determine whether restarts are advantageous. The most
commonly used probability distributions admit the use of a scale and a location
parameter. Location parameters shift the density function to the right, while
scale parameters affect the spread of the distribution. It is shown that for
all distributions scale parameters do not influence the usefulness of restarts
and that location parameters only have a limited influence. This result
simplifies the analysis of the usefulness of restarts. The most important
runtime probability distributions are the log-normal, the Weibull, and the
Pareto distribution. In this work, these distributions are analyzed for the
usefulness of restarts. Secondly, a condition for the optimal restart time (if
it exists) is provided. The log-normal, the Weibull, and the generalized Pareto
distribution are analyzed in this respect. Moreover, it is shown that the
optimal restart time is also not influenced by scale parameters and that the
influence of location parameters is only linear
Direct control of the tunnel splitting in a one-electron double quantum dot
Quasi-static transport measurements are employed on a laterally defined
tunnel-coupled double quantum dot. A nearby quantum point contact allows us to
track the charge as added to the device. If charged with only up to one
electron, the low-energy spectrum of the double quantum dot is characterized by
its quantum mechanical interdot tunnel splitting. We directly measure its
magnitude by utilizing particular anticrossing features in the stability
diagram at finite source-drain bias. By modification of gate voltages defining
the confinement potential as well as by variation of a perpendicular magnetic
field we demonstrate the tunability of the coherent tunnel coupling.Comment: High resolution pdf file available at
http://www2.nano.physik.uni-muenchen.de/~huettel/research/anticrossing.pd
Characterization of InGaN and InAlN epilayers by microdiffraction X-Ray reciprocal space mapping
We report a study of InGaN and InAlN epilayers grown on GaN/Sapphire substrates by microfocused three-dimensional X-ray Reciprocal Space Mapping (RSM). The analysis of the full volume of reciprocal space, while probing samples on the microscale with a focused X-ray beam, allows us to gain uniquely valuable information about the microstructure of III-N alloy epilayers. It is found that “seed” InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain free. This indicates that the growth of InGaN epilayers follows the Volmer-Weber mechanism with nucleation of “seeds” on strain fields generated by the a-type dislocations which are responsible for the twist of underlying GaN mosaic blocks. In the case of InAlN epilayer formation of composition gradient was observed at the beginning of the epitaxial growth
Entanglement verification for quantum key distribution systems with an underlying bipartite qubit-mode structure
We consider entanglement detection for quantum key distribution systems that
use two signal states and continuous variable measurements. This problem can be
formulated as a separability problem in a qubit-mode system. To verify
entanglement, we introduce an object that combines the covariance matrix of the
mode with the density matrix of the qubit. We derive necessary separability
criteria for this scenario. These criteria can be readily evaluated using
semidefinite programming and we apply them to the specific quantum key
distribution protocol.Comment: 6 pages, 2 figures, v2: final versio
Putting competing orders in their place near the Mott transition
We describe the localization transition of superfluids on two-dimensional
lattices into commensurate Mott insulators with average particle density p/q
(p, q relatively prime integers) per lattice site. For bosons on the square
lattice, we argue that the superfluid has at least q degenerate species of
vortices which transform under a projective representation of the square
lattice space group (a PSG). The formation of a single vortex condensate
produces the Mott insulator, which is required by the PSG to have density wave
order at wavelengths of q/n lattice sites (n integer) along the principle axes;
such a second-order transition is forbidden in the Landau-Ginzburg-Wilson
framework. We also discuss the superfluid-insulator transition in the direct
boson representation, and find that an interpretation of the quantum
criticality in terms of deconfined fractionalized bosons is only permitted at
special values of q for which a permutative representation of the PSG exists.
We argue (and demonstrate in detail in a companion paper: L. Balents et al.,
cond-mat/0409470) that our results apply essentially unchanged to electronic
systems with short-range pairing, with the PSG determined by the particle
density of Cooper pairs. We also describe the effect of static impurities in
the superfluid: the impurities locally break the degeneracy between the q
vortex species, and this induces density wave order near each vortex. We
suggest that such a theory offers an appealing rationale for the local density
of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM
studies of the vortex lattice of BSCCO, and allows a unified description of the
nucleation of density wave order in zero and finite magnetic fields. We note
signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added
new appendix and clarifying remarks; (v4) corrected typo
Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO_3 with R = La, Pr, Nd and Eu
We present a combined study of the thermal expansion and the thermal
conductivity of the perovskite series RCoO_3 with R = La, Nd, Pr and Eu. The
well-known spin-state transition in LaCoO_3 is strongly affected by the
exchange of the R ions due to their different ionic radii, i.e. chemical
pressure. This can be monitored in detail by measurements of the thermal
expansion, which is a highly sensitive probe for detecting spin-state
transitions. The Co ions in the higher spin state act as additional scattering
centers for phonons, therefore suppressing the phonon thermal conductivity.
Based on the analysis of the interplay between spin-state transition and heat
transport, we present a quantitative model of the thermal conductivity for the
entire series. In PrCoO_3, an additional scattering effect is active at low
temperatures. This effect arises from the crystal field splitting of the 4f
multiplet, which allows for resonant scattering of phonons between the various
4f levels.Comment: 15 pages including 5 figure
Magnetothermal transport in the spin-1/2 chains of copper pyrazine dinitrate
We present experiments on the thermal transport in the spin-1/2 chain
compound copper pyrazine dinitrate Cu(C_4 H_4 N_2)(NO_3)_2. The heat
conductivity shows a surprisingly strong dependence on the applied magnetic
field B, characterized at low temperatures by two main features. The first one
appearing at low B is a characteristic dip located at mu_B B ~ k_B T, that may
arise from Umklapp scattering. The second one is a plateau-like feature in the
quantum critical regime, mu_B |B-B_c| < k_B T, where B_c is the saturation
field at T=0. The latter feature clearly points towards a momentum and field
independent mean free path of the spin excitations, contrary to theoretical
expectations.Comment: 4 pages, 4 figure
- …