24 research outputs found

    CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells

    Get PDF
    Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1ΔE1E2-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1W529A was unaffected by the presence of neutralizing antibodies that inhibit E2–CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission

    In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection

    Get PDF
    Despite the development of direct-acting antivirals (DAAs), hepatitis C virus (HCV) infection remains a major cause for liver disease and cancer worldwide. Entry inhibitors block virus host cell entry and, therefore, prevent establishment of chronic infection and liver disease. Due to their unique mechanism of action, entry inhibitors provide an attractive antiviral strategy in organ transplantation. In this study, we developed an innovative approach in preventing HCV infection using a synergistic combination of a broadly neutralizing human monoclonal antibody (HMAb) targeting the HCV E2 protein and a host-targeting anti-claudin 1 (CLDN1) humanized monoclonal antibody. An in vivo proof-of-concept study in human liver-chimeric FRG-NOD mice proved the efficacy of the combination therapy at preventing infection by an HCV genotype 1b infectious serum. While administration of individual antibodies at lower doses only showed a delay in HCV infection, the combination therapy was highly protective. Furthermore, the combination proved to be effective in preventing infection of primary human hepatocytes by neutralization-resistant HCV escape variants selected during liver transplantation, suggesting that a combination therapy is suited for the neutralization of difficult-to-treat variants. In conclusion, our findings suggest that the combination of two HMAbs targeting different steps of virus entry improves treatment efficacy while simultaneously reducing treatment duration and costs. Our approach not only provides a clinical perspective to employ HMAb combination therapies to prevent graft re-infection and its associated liver disease but may also help to alleviate the urgent demand for organ transplants by allowing the transplantation of organs from HCV-positive donors

    Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    Get PDF
    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus

    Breadth of neutralization and synergy of clinically relevant human monoclonal antibodies against HCV genotypes 1a, 1b, 2a, 2b, 2c, and 3a

    No full text
    Human monoclonal antibodies (HMAbs) with neutralizing capabilities constitute potential immune-based treatments or prophylaxis against hepatitis C virus (HCV). However, lack of cell culture-derived HCV (HCVcc) harboring authentic envelope proteins (E1/E2) has hindered neutralization investigations across genotypes, subtypes, and isolates. We investigated the breadth of neutralization of 10 HMAbs with therapeutic potential against a panel of 16 JFH1-based HCVcc expressing patient-derived Core-NS2 from genotypes 1a (strains H77, TN, and DH6), 1b (J4, DH1, and DH5), 2a (J6, JFH1, and T9), 2b (J8, DH8, and DH10), 2c (S83), and 3a (S52, DBN, and DH11). Virus stocks used for in vitro neutralization analysis contained authentic E1/E2, with the exception of full-length JFH1 that acquired the N417S substitution in E2. The 50% inhibition concentration (IC(50)) for each HMAb against the HCVcc panel was determined by dose-response neutralization assays in Huh7.5 cells with antibody concentrations ranging from 0.0012 to 100 μg/ml. Interestingly, IC(50)-values against the different HCVcc’s exhibited large variations among the HMAbs, and only three HMAbs (HC-1AM, HC84.24, and AR4A) neutralized all 16 HCVcc recombinants. Furthermore, the IC(50)-values for a given HMAb varied greatly with the HCVcc strain, which supports the use of a diverse virus panel. In cooperation analyses, HMAbs HC84.24, AR3A, and, especially HC84.26, demonstrated synergistic effects towards the majority of the HCVcc’s when combined individually with AR4A. Conclusion: Through a neutralization analysis of 10 clinically relevant HMAbs against 16 JFH1-based Core-NS2 recombinants from genotypes 1a, 1b, 2a, 2b, 2c, and 3a, we identified at least 3 HMAbs with potent and broad neutralization potential. The neutralization synergism obtained when pooling the most potent HMAbs could have significant implications for developing novel strategies to treat and control HCV

    In vitro selection of a neutralization-resistant hepatitis C virus escape mutant

    No full text
    Effective immunization against hepatitis C virus (HCV) infections is likely to require the induction of both robust T and B cell immunity. Although neutralizing antibodies may play an important role in control of infection, there is little understanding of the structure of the HCV envelope glycoproteins and how they interact with such antibodies. An additional challenge for vaccine design is the genetic diversity of HCV and the rapid evolution of viral quasispecies that escape antibody-mediated neutralization. We used a cell culture-infectious, chimeric HCV with the structural proteins of genotype 1a virus to identify envelope residues contributing to the epitope recognized by a broadly neutralizing, murine monoclonal antibody, AP33. By repetitive rounds of neutralization followed by amplification, we selected a population of viral escape mutants that resist stringent neutralization with AP33 and no longer bind the antibody. Two amino acid substitutions, widely separated in the linear sequence of the E2 envelope protein (N415Y and E655G), were identified by sequencing of cloned cDNA and shown by reverse genetics analysis to contribute jointly to the AP33 resistance phenotype. The N415Y mutation substantially lowered virus fitness, most likely because of a defect in viral entry, but did not reduce binding of soluble CD81 to immobilized HCV-pseudotyped retrovirus particles. The in vitro selection of an HCV escape mutant recapitulates the ongoing evolution of antigenic variants that contributes to viral persistence in humans and reveals information concerning the conformational structure of the AP33 epitope, its role in viral replication, and constraints on its molecular evolution
    corecore