7,041 research outputs found

    Number of adaptive steps to a local fitness peak

    Full text link
    We consider a population of genotype sequences evolving on a rugged fitness landscape with many local fitness peaks. The population walks uphill until it encounters a local fitness maximum. We find that the statistical properties of the walk length depend on whether the underlying fitness distribution has a finite mean. If the mean is finite, all the walk length cumulants grow with the sequence length but approach a constant otherwise. Experimental implications of our analytical results are also discussed

    Stochastic modeling of cargo transport by teams of molecular motors

    Full text link
    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1

    Stronger computational modelling of signalling pathways using both continuous and discrete-state methods

    Get PDF
    Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results

    The Genetic and Environmental Sources of Resemblance Between Normative Personality and Personality Disorder Traits

    Get PDF
    Recent work has suggested a high level of congruence between normative personality, most typically represented by the big five factors, and abnormal personality traits. In 2,293 Norwegian adult twins ascertained from a population-based registry, the authors evaluated the degree of sharing of genetic and environmental influences on normative personality, assessed by the Big Five Inventory (BFI), and personality disorder traits (PDTs), assessed by the Personality Inventory for DSM-S-Norwegian Brief Form (PID-5NBF). For four of the five BFI dimensions, the strongest genetic correlation was observed with the expected PID-5-NBF dimension (e.g., neuroticism with negative affectivity [+], conscientiousness with disinhibition [-]). However, neuroticism, conscientiousness, and agreeableness had substantial genetic correlations with other PID-S-NBF dimensions (e.g., neuroticism with compulsivity [+], agreeableness with detachment [-]). Openness had no substantial genetic correlations with any PID-5-NBF dimension. The proportion of genetic risk factors shared in aggregate between the BFI traits and the PID-5-NBF dimensions was quite high for conscientiousness and neuroticism, relatively robust for extraversion and agreeableness, but quite low for openness. Of the six PID-S-NBF dimensions, three (negative affectivity, detachment, and disinhibition) shared, in aggregate, most of their genetic risk factors with normative personality traits. Genetic factors underlying psychoticism, antagonism, and compulsivity were shared to a lesser extent, suggesting that they are influenced by etiological factors not well indexed by the BFI

    Extreme value distributions for weakly correlated fitnesses in block model

    Full text link
    We study the limit distribution of the largest fitness for two models of weakly correlated and identically distributed random fitnesses. The correlated fitness is given by a linear combination of a fixed number of independent random variables drawn from a common parent distribution. We find that for certain class of parent distributions, the extreme value distribution for correlated random variables can be related either to one of the known limit laws for independent variables or the parent distribution itself. For other cases, new limiting distributions appear. The conditions under which these results hold are identified.Comment: Expanded, added reference

    Numerical simulation of unconstrained cyclotron resonant maser emission

    Get PDF
    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD

    Mechanical quality factor of a sapphire fiber at cryogenic temperatures

    Get PDF
    A mechanical quality factor of 1.1×1071.1 \times 10^{7} was obtained for the 199 Hz bending vibrational mode in a monocrystalline sapphire fiber at 6 K. Consequently, we confirm that pendulum thermal noise of cryogenic mirrors used for gravitational wave detectors can be reduced by the sapphire fiber suspension.Comment: To be published to Physiscs Letters A. Number of pages: 10 Number of figures: 5 Number of tables:

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Numerical simulations of unbounded cyclotron-maser emissions

    Get PDF
    Numerical simulations have been conducted to study the spatial growth rate and emission topology of the cyclotron-maser instability responsible for stellar/planetary auroral magnetospheric radio emission and intense non-thermal radio emission in other astrophysical contexts. These simulations were carried out in an unconstrained geometry, so that the conditions existing within the source region of some natural electron cyclotron masers could be more closely modelled. The results have significant bearing on the radiation propagation and coupling characteristics within the source region of such non-thermal radio emissions
    corecore