18,264 research outputs found

    Characterization of soft stripe-domain deformations in Sm-C and Sm-C* liquid-crystal elastomers

    Get PDF
    The neoclassical model of Sm-C (and Sm-C*) elastomers developed by Warner and Adams predicts a class of “soft” (zero energy) deformations. We find and describe the full set of stripe domains—laminate structures in which the laminates alternate between two different deformations—that can form between pairs of these soft deformations. All the stripe domains fall into two classes, one in which the smectic layers are not bent at the interfaces, but for which—in the Sm-C* case—the interfaces are charged, and one in which the smectic layers are bent but the interfaces are never charged. Striped deformations significantly enhance the softness of the macroscopic elastic response

    Selective extinction of marine plankton at the end of the Mesozoic era: The fossil and stable isotope record

    Get PDF
    Floral, faunal and stable isotope evidence in a continuous sequence of latest Cretaceous and earliest Tertiary shallow water marine deposits in the Mangyshlak Peninsula, USSR suggest severe environmental changes at the Cretaceous/Tertiary (K/T) boundary. Time frame is provided by nanno, micro and macrofossils as well as by magnetic stratigraphy and an iridium spike. Oxygen isotopic analyses of the bulk sediments, composed of nanno and microplankton skeletal remains, show a sharp positive spike at the K/T boundary. This shift is primarily attributed to severe cooling possibly accompanied by increased salinities of the surface mixed layer. Floral and faunal extinctions were selective, affecting approximately 90 percent of the warm water calcareous phyto and zooplankton genera in the Tethyan-Paratethyan regions. These highly diverse taxa with many endemic representatives were at the peak of their evolutionary development. Geologic evidence indicates that the terminal Cretaceous temperature decline was coeval with widespread and intense volcanic activity which reached a peak at the close of the Mesozoic Era. Increased acidity temporarily prohibited calcite nucleation of the surface dwelling warm-water plankton. Superimposed upon decreased alkalinity, severe and rapid climatic changes caused the extinction of calcareous phyto and zooplankton

    Sharp change over from compound nuclear fission to shape dependent quasi fission

    Full text link
    Fission fragment mass distribution has been measured from the decay of 246^{246}Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the 14^{14}N + 232^{232}Th reaction compared to the 11^{11}B + 235^{235}U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply.Comment: 4 pages,6 figure

    Evaporation of alpha particles from 31^31P nucleus

    Full text link
    The energy spectra of alpha particles have been measured in coincidence with the evaporation residues for the decay of the compound nucleus 31^31P produced in the reaction 19^19F (96 MeV) + 12^12C. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effect in the compound nucleus need to be considered in order to explain the shape of the evaporated alpha particle energy spectra.Comment: 4 pages, 3 figures, revtex, epsf styl

    Elasticity of Polydomain Liquid Crystal Elastomers

    Full text link
    We model polydomain liquid-crystal elastomers by extending the neo-classical soft and semi-soft free energies used successfully to describe monodomain samples. We show that there is a significant difference between polydomains cross-linked in homogeneous high symmetry states then cooled to low symmetry polydomain states and those cross-linked directly in the low symmetry polydomain state. For example, elastomers cross-linked in the isotropic state then cooled to a nematic polydomain will, in the ideal limit, be perfectly soft, and with the introduction of non-ideality, will deform at very low stress until they are macroscopically aligned. The director patterns observed in them will be disordered, characteristic of combinations of random deformations, and not disclination patterns. We expect these samples to exhibit elasticity significantly softer than monodomain samples. Polydomains cross-linked in the nematic polydomain state will be mechanically harder and contain characteristic schlieren director patterns. The models we use for polydomain elastomers are spatially heterogeneous, so rather than solving them exactly we elucidate this behavior by bounding the energies using Taylor-like (compatible test strain fields) and Sachs (constant stress) limits extended to non-linear elasticity. Good agreement is found with experiments that reveal the supersoft response of some polydomains. We also analyze smectic polydomain elastomers and propose that polydomain SmC* elastomers cross-linked in the SmA monodomain state are promising candidates for low field electrical actuation.Comment: 13 pages, 11 figure

    Supersoft elasticity in polydomain nematic elastomers

    Get PDF
    We consider the equilibrium stress-strain behavior of polydomain liquid crystal elastomers (PLCEs). We show that there is a fundamental difference between PLCEs cross-linked in the high temperature isotropic and low temperature aligned states. PLCEs cross-linked in the isotropic state then cooled to an aligned state will exhibit extremely soft elasticity (confirmed by recent experiments) and ordered director patterns characteristic of textured deformations. PLCEs cross-linked in the aligned state will be mechanically much harder and characterized by disclination textures

    Study of Dissipative Collisions of 20^{20}Ne (\sim7-11 MeV/nucleon) + 27^{27}Al

    Full text link
    The inclusive energy distributions of complex fragments (3 \leqZ \leq 9) emitted in the reactions 20^{20}Ne (145, 158, 200, 218 MeV) + 27^{27}Al have been measured in the angular range 10o^{o} - 50o^{o}. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well exlained in the framework of standard statistical model. It is found that there is strong competition between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of \sim 1021^{-21} - 1022^{-22} sec., and it was found to decrease with increasing fragment mass. The angular momentum dissipations in fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. It has been found that, the estimated angular momentum dissipations, for lighter fragments in particular, are more than those predicted by the empirical sticking limit.Comment: 16 pages, 9 figure
    corecore