21 research outputs found
Second T = 3/2 state in B and the isobaric multiplet mass equation
Recent high-precision mass measurements and shell model calculations~[Phys.
Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation
for the requirement of a cubic isobaric multiplet mass equation for the lowest
isospin quartet. The conclusions relied upon the choice of the
excitation energy for the second state in B, which had two
conflicting measurements prior to this work. We remeasured the energy of the
state using the reaction and significantly disagree
with the most recent measurement. Our result supports the contention that
continuum coupling in the most proton-rich member of the quartet is not the
predominant reason for the large cubic term required for nuclei
Isoscalar giant monopole strength in Ni, Zr, Sn and Pb
Inelastic -particle scattering at energies of a few hundred MeV and
very-forward scattering angles including has been established as a
tool for the study of the isoscalar giant monopole (IS0) strength distributions
in nuclei. An independent investigation of the IS0 strength in nuclei across a
wide mass range was performed using the facility at iThemba
Laboratory for Accelerator Based Sciences (iThemba LABS), South Africa, to
understand differences observed between IS0 strength distributions in previous
experiments performed at the Texas A\&M University (TAMU) Cyclotron Institute,
USA and the Research Center for Nuclear Physics (RCNP), Japan. The isoscalar
giant monopole resonance (ISGMR) was excited in Ni, Zr,
Sn and Pb using -particle inelastic scattering with
MeV beam and scattering angles
and . The K magnetic spectrometer at iThemba LABS was used to
detect and momentum analyze the inelastically scattered particles. The
IS0 strength distributions in the nuclei studied were deduced with the
difference-of-spectra (DoS) technique including a correction factor for the
data based on the decomposition of cross sections in previous
experiments. IS0 strength distributions for Ni, Zr, Sn
and Pb are extracted in the excitation-energy region MeV.Using correction factors extracted from the RCNP experiments, there is
a fair agreement with their published IS0 results. Good agreement for IS0
strength in Ni is also obtained with correction factors deduced from the
TAMU results, while marked differences are found for Zr and Pb.Comment: 12 pages, 10 figures, regular article submitted to PR
Fine structure of the isoscalar giant monopole resonance in Ni, Zr, Sn and Pb
Over the past two decades high energy-resolution inelastic proton scattering
studies were used to gain an understanding of the origin of fine structure
observed in the isoscalar giant quadrupole resonance (ISGQR) and the isovector
giant dipole resonance (IVGDR). Recently, the isoscalar giant monopole
resonance (ISGMR) in Ni, Zr, Sn and Pb was
studied at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS)
by means of inelastic -particle scattering at very forward scattering
angles (including ). The good energy resolution of the measurement
revealed significant fine structure of the ISGMR.~To extract scales by means of
wavelet analysis characterizing the observed fine structure of the ISGMR in
order to investigate the role of different mechanisms contributing to its decay
width. Characteristic energy scales are extracted from the fine structure using
continuous wavelet transforms. The experimental energy scales are compared to
different theoretical approaches performed in the framework of quasiparticle
random phase approximation (QRPA) and beyond-QRPA including complex
configurations using both non-relativistic and relativistic density functional
theory. All models highlight the role of Landau fragmentation for the damping
of the ISGMR especially in the medium-mass region. Models which include the
coupling between one particle-one hole (1p-1h) and two particle-two hole
(2p-2h) configurations modify the strength distributions and wavelet scales
indicating the importance of the spreading width. The effect becomes more
pronounced with increasing mass number. Wavelet scales remain a sensitive
measure of the interplay between Landau fragmentation and the spreading width
in the description of the fine structure of giant resonances.Comment: 13 pages,7 figures, regular articl
β and γ bands in N = 88 , 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : vibrations, shape coexistence, and superdeformation
CITATION: Majola, S. N. T. et al. 2019. β and γ bands in N=88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory: Vibrations, shape coexistence, and superdeformation. Physical Review C, 100(4). doi:10.1103/PhysRevC.100.044324.The original publication is available at https://journals.aps.org/prc/A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N = 88 to 92 and proton numbers Z = 62 (Sm) to 70 (Yb). Data, including excitation energies,
B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new
data presented for the first time in this study. The experimental data are compared to calculations using a
five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A
realistic potential in the quadrupole shape parameters V (β,γ ) is determined from potential energy surfaces
(PES) calculated using the CDFT. The parameters of the 5DCH are fixed and contained within the CDFT.
Overall, a satisfactory agreement is found between the data and the calculations. In line with the energy
staggering S(I) of the levels in the 2γ
+ bands, the potential energy surfaces of the CDFT calculations indicate
γ -soft shapes in the N = 88 nuclides, which become γ rigid for N = 90 and N = 92. The nature of the 02
+
bands changes with atomic number. In the isotopes of Sm to Dy, they can be understood as β vibrations, but in
the Er and Yb isotopes the 02
+ bands have wave functions with large components in a triaxial superdeformed
minimum. In the vicinity of 152Sm, the present calculations predict a soft potential in the β direction but do not
find two coexisting minima. This is reminiscent of 152Sm exhibiting an X(5) behavior. The model also predicts
that the 03
+ bands are of two-phonon nature, having an energy twice that of the 02
+ band. This is in contradiction
with the data and implies that other excitation modes must be invoked to explain their origin.https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.044324Publisher’s versio
Low-lying positive parity bands in
The structure of the low-lying positive parity bands in 162Yb has been studied at iThemba LABS, using the 150Sm(16O,4n)162Yb fusion-evaporation reaction. A band built on the first excited state has been identified for the first time. In addition, we report new rotational levels that form the band structures of both the odd and even spin components of the -vibrational band. The first excited band and the even spin members of the -vibrational band exhibit a Landau-Zenner crossing. This crossing demonstrates that the significant signature splitting between the odd and even spin members of the band is contributed to by band mixing
Structure of Si and the magicity of the N = 20 gap at Z = 14
International audienc
New collective structures in the
The 152Sm(16O, 5n)163Yb reaction at a beam energy of 93 MeV was used to study the excited states of 163Yb with the AFRODITE -ray spectrometer at iThemba LABS. The level scheme of 163Yb has been extended and new rotational bands established. The band based on the ground-state has been extended from a spin of 11/2- to spin 43/2-. A high-K band based on the neutron [505]11/2- Nilsson orbital has been observed and is reported for the first time in this work. Additional new states in 163Yb were observed which all decay to the yrast band. Some of these states are placed in a sequence which is conjectured to be a band involving a coupling with the i
13/2[642]5/2+ neutron orbital. The band structures are discussed with reference to Cranked Shell Model (CSM) calculations and a systematic comparison with the neighbouring nuclei
Low- And medium-spin negative-parity bands in the Os 187 nucleus
Low- and medium-spin negative-parity bands of Os187 have been studied using the AFRican Omnipurpose Detector for Innovative Techniques and Experiments (AFRODITE) array, following the W186(He4,3n)Os187 reaction at a beam energy of 37 MeV. In the current work, all the previously known bands have been significantly extended and three new bands have been added to the level scheme. The angular distribution ratio (RAD) and polarization measurements have been used to assign spin and parity to the observed new levels. The configurations of some of the bands have been modified. The observed bands are interpreted within the cranked shell model (CSM) and cranked Nilsson-Strutinsky-Bogoliubov (CNSB) formalism. Comparison with experimental data shows good agreements. Systematic comparison with the neighboring Os185 isotope is also discussed
Isoscalar giant monopole strength in Ni, Zr, Sn and Pb
Inelastic -particle scattering at energies of a few hundred MeV and very-forward scattering angles including has been established as a tool for the study of the isoscalar giant monopole (IS0) strength distributions in nuclei. An independent investigation of the IS0 strength in nuclei across a wide mass range was performed using the facility at iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), South Africa, to understand differences observed between IS0 strength distributions in previous experiments performed at the Texas A&M University (TAMU) Cyclotron Institute, USA and the Research Center for Nuclear Physics (RCNP), Japan. The isoscalar giant monopole resonance (ISGMR) was excited in Ni, Zr, Sn and Pb using -particle inelastic scattering with MeV beam and scattering angles and . The K magnetic spectrometer at iThemba LABS was used to detect and momentum analyze the inelastically scattered particles. The IS0 strength distributions in the nuclei studied were deduced with the difference-of-spectra (DoS) technique including a correction factor for the data based on the decomposition of cross sections in previous experiments. IS0 strength distributions for Ni, Zr, Sn and Pb are extracted in the excitation-energy region MeV.Using correction factors extracted from the RCNP experiments, there is a fair agreement with their published IS0 results. Good agreement for IS0 strength in Ni is also obtained with correction factors deduced from the TAMU results, while marked differences are found for Zr and Pb