969 research outputs found
ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package
The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters
An investigative study of multispectral data compression for remotely-sensed images using vector quantization and difference-mapped shift-coding
A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed
A quantitative analysis of TIMS data obtained on the Learjet 23 at various altitudes
A series of Thermal Infrared Multispectral Scanner (TIMS) data acquisition flights were conducted on the NASA Learjet 23 at different altitudes over a test site. The objective was to monitor the performance of the TIMS (its estimation of the brightness temperatures of the ground scene) with increasing altitude. The results do not show any significant correlation between the brightness temperatures and the altitude. The analysis indicates that the estimation of the temperatures is a function of the accuracy of the atmospheric correction used for each altitude
An Analysis of Racial Disparities Affecting College of Business Degree Completion at a University\u27s Satellite Campuses
This research study provides campus-type specific insight into the graduation rates of students of color at a departmental (i.e., School of Business) level. With underrepresented student populations comprising up to a third of business school enrollment, there is institutional and departmental value in understanding how, and at what levels, undergraduate business students of color persist and graduate at satellite campuses.
Findings from this study could be used to inform institutional and departmental administrators and program managers on different strategies to foster not only a more diverse matriculation, but also to improve graduation outcomes for underrepresented student populations. Study results could also provide insight into how campus differences (i.e., main, satellite) impact graduation rates
Crosslingual Document Embedding as Reduced-Rank Ridge Regression
There has recently been much interest in extending vector-based word
representations to multiple languages, such that words can be compared across
languages. In this paper, we shift the focus from words to documents and
introduce a method for embedding documents written in any language into a
single, language-independent vector space. For training, our approach leverages
a multilingual corpus where the same concept is covered in multiple languages
(but not necessarily via exact translations), such as Wikipedia. Our method,
Cr5 (Crosslingual reduced-rank ridge regression), starts by training a
ridge-regression-based classifier that uses language-specific bag-of-word
features in order to predict the concept that a given document is about. We
show that, when constraining the learned weight matrix to be of low rank, it
can be factored to obtain the desired mappings from language-specific
bags-of-words to language-independent embeddings. As opposed to most prior
methods, which use pretrained monolingual word vectors, postprocess them to
make them crosslingual, and finally average word vectors to obtain document
vectors, Cr5 is trained end-to-end and is thus natively crosslingual as well as
document-level. Moreover, since our algorithm uses the singular value
decomposition as its core operation, it is highly scalable. Experiments show
that our method achieves state-of-the-art performance on a crosslingual
document retrieval task. Finally, although not trained for embedding sentences
and words, it also achieves competitive performance on crosslingual sentence
and word retrieval tasks.Comment: In The Twelfth ACM International Conference on Web Search and Data
Mining (WSDM '19
Analysis of TIMS performance subjected to simulated wind blast
The results of the performance of the Thermal Infrared Multispectral Scanner (TIMS) when it is subjected to various wind conditions in the laboratory are described. Various wind conditions were simulated using a 24 inch fan or combinations of air jet streams blowing toward either or both of the blackbody surfaces. The fan was used to simulate a large volume of air flow at moderate speeds (up to 30 mph). The small diameter air jets were used to probe TIMS system response in reaction to localized wind perturbations. The maximum nozzle speed of the air jet was 60 mph. A range of wind directions and speeds were set up in the laboratory during the test. The majority of the wind tests were conducted under ambient conditions with the room temperature fluctuating no more than 2 C. The temperature of the high speed air jet was determined to be within 1 C of the room temperature. TIMS response was recorded on analog tape. Additional thermistor readouts of the blackbody temperatures and thermocouple readout of the ambient temperature were recorded manually to be compared with the housekeeping data recorded on the tape. Additional tests were conducted under conditions of elevated and cooled room temperatures. The room temperature was varied between 19.5 to 25.5 C in these tests. The calibration parameters needed for quantitative analysis of TIMS data were first plotted on a scanline-by-scanline basis. These parameters are the low and high blackbody temperature readings as recorded by the TIMS and their corresponding digitized count values. Using these values, the system transfer equations were calculated. This equation allows us to compute the flux for any video count by computing the slope and intercept of the straight line that relates the flux to the digital count. The actual video of the target (the lab floor in this case) was then compared with a simulated target. This simulated target was assumed to be a blackbody at emissivity of .95 degrees and the temperature was assumed to be at ambient temperature as recorded by the TIMS for each scanline. Using the slope and the intercept the flux corresponding to this target was converted into digital counts. The counts were observed to have a strong correlation with the actual video as recorded by the TIMS. The attached graphs describe the performance of the TIMS when compressed air is blown at each one of the blackbodies at different speeds. The effect of blowing a fan and changing the room temperature is also being analyzed. Results indicate that the TIMS system responds to variation in wind speed in real time and maintains the capability to produce accurate temperatures on a scan line basis
Direction specific error patterns during continuous tracking of the subjective visual vertical
The aim of this study was to characterize the error pattern of continuously tracking the perceived earth-vertical during roll rotations from upright to right or left ear-down and from right or left ear-down to upright. We compared the tracking responses of two paradigms, which either continuously activated the otoliths organs alone (constant velocity tilt) or both the otolith organs and the semicircular canals (constant acceleration tilt). The tracking responses of the subjective visual vertical showed characteristic differences depending on starting position and tilt direction relative to gravity. The error patterns in the constant-velocity and constant-acceleration tilt paradigm were reversed. Estimations during tracking, when otolith information was continuously changing, were more precise compared to estimations following fast tilts to fixed roll tilt positions. We conclude that the central processing underlying these perceptual tracking responses requires, besides the otolith input, information from the vertical semicircular canal
An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data
The effective flux incident upon the detectors of a thermal sensor, after it has been corrected for atmospheric effects, is a function of a non-linear combination of the emissivity of the target for that channel and the temperature of the target. The sensor system cannot separate the contribution from the emissivity and the temperature that constitute the flux value. A method that estimates the bounds on these temperatures and emissivities from thermal data is described. This method is then tested with remotely sensed data obtained from NASA's Thermal Infrared Multispectral Scanner (TIMS) - a 6 channel thermal sensor. Since this is an under-determined set of equations i.e. there are 7 unknowns (6 emissivities and 1 temperature) and 6 equations (corresponding to the 6 channel fluxes), there exist theoretically an infinite combination of values of emissivities and temperature that can satisfy these equations. Using some realistic bounds on the emissivities, bounds on the temperature are calculated. These bounds on the temperature are refined to estimate a tighter bound on the emissivity of the source. An error analysis is also carried out to quantitatively determine the extent of uncertainty introduced in the estimate of these parameters. This method is useful only when a realistic set of bounds can be obtained for the emissivities of the data. In the case of water the lower and upper bounds were set at 0.97 and 1.00 respectively. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected with the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. Ground truth temperatures using thermometers and radiometers were also obtained over an area of the reservoir. The results of two independent runs of the radiometer data averaged 7.03 plus or minus .70 for the first run and 7.31 plus or minus .88 for the second run. The results of the algorithm yield a temperature of 7.68 for the low altitude data to 8.73 for the high altitude data
General Scheme for Perfect Quantum Network Coding with Free Classical Communication
This paper considers the problem of efficiently transmitting quantum states
through a network. It has been known for some time that without additional
assumptions it is impossible to achieve this task perfectly in general --
indeed, it is impossible even for the simple butterfly network. As additional
resource we allow free classical communication between any pair of network
nodes. It is shown that perfect quantum network coding is achievable in this
model whenever classical network coding is possible over the same network when
replacing all quantum capacities by classical capacities. More precisely, it is
proved that perfect quantum network coding using free classical communication
is possible over a network with source-target pairs if there exists a
classical linear (or even vector linear) coding scheme over a finite ring. Our
proof is constructive in that we give explicit quantum coding operations for
each network node. This paper also gives an upper bound on the number of
classical communication required in terms of , the maximal fan-in of any
network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in
arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the
Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP'09), LNCS 5555, pp. 622-633, 200
Multi-resolution processing for fractal analysis of airborne remotely sensed data
Fractal geometry is increasingly becoming a useful tool for modeling natural phenomenon. As an alternative to Euclidean concepts, fractals allow for a more accurate representation of the nature of complexity in natural boundaries and surfaces. Since they are characterized by self-similarity, an ideal fractal surface is scale-independent; i.e. at different scales a fractal surface looks the same. This is not exactly true for natural surfaces. When viewed at different spatial resolutions parts of natural surfaces look alike in a statistical manner and only for a limited range of scales. Images acquired by NASA's Thermal Infrared Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension - Schelberg's line-divider method, the variogram method, and the triangular prism method. A description of these methods and the results of applying these methods to a remotely-sensed image is also presented. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected was the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. This corresponds to 3 different pixel sizes - 5m, 15m, and 30m. After, simulating different spatial sampling intervals within the same image for each of the 3 image sets, the results are cross-correlated to compare the extent of detail and complexity that is obtained when data is taken at lower spatial intervals
- …