4,574 research outputs found

    Superposition of macroscopic numbers of atoms and molecules

    Full text link
    We theoretically examine photoassociation of a non-ideal Bose-Einstein condensate, focusing on evidence for a macroscopic superposition of atoms and molecules. This problem raises an interest because, rather than two states of a given object, an atom-molecule system is a seemingly impossible macroscopic superposition of different objects. Nevertheless, photoassociation enables coherent intraparticle conversion, and we thereby propose a viable scheme for creating a superposition of a macroscopic number of atoms with a macroscopic number of molecules.Comment: 4 pages, 2 figs, to appear in Phys. Rev. Let

    Feshbach resonances and collapsing Bose-Einstein condensates

    Full text link
    We investigate the quantum state of burst atoms seen in the recent Rb-85 experiments at JILA. We show that the presence of a resonance scattering state can lead to a pairing instability generating an outflow of atoms with energy comparable to that observed. A resonance effective field theory is used to study this dynamical process in an inhomogeneous system with spherical symmetry

    Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections

    Get PDF
    This work was supported by the European Research Council (http://erc.europa.eu/: STRIFE Advanced Grant ERC-2009-AdG-249793). A.J.P.B. was also supported by the UK Biotechnology and Biological Research Council (www.bbsrc.ac.uk: Research Grants BB/F00513X/1, BB/K017365/1), the UK Medical Research Council (www.mrc.ac.uk: Programme Grant MR/M026663/1; Centre Grant MR/ N006364/1), and the Wellcome Trust (www.wellcome.ac.uk: Strategic Award 097377)Peer reviewedPublisher PD

    A performance evaluation of commercial fibrinogen reference preparations and assays for Clauss and PT-derived fibrinogen

    Get PDF
    The wide availability of fibrinogen estimations based on the prothrombin time (PT-Fg) has caused concern about the variability and clinical utility of fibrinogen assays. In a multi-centre study, we investigated fibrinogen assays using various reagents and analysers, Clauss assays generally gave good agreement, although one reagent gave 15-30% higher values in DIC and thrombolysis. Two commercial reference preparations had much lower potencies than the manufacturers declared, and plasma turbidity influenced parallelism in some Clauss assays, PT-Fg assays gave higher values than Clauss and showed calibrant dependent effects, the degree of disparity correlating with calibrant and test sample turbidity. Analyser and thromboplastin dependent differences were noted. The relationship between Clauss and PT-Fg assays was sigmoid, and the plateau of maximal PT-Fg differed by about 2 g/l between reagents. ELISA and immunonephelometric assays correlated well, but with a high degree of scatter. Antigen levels were higher than Clauss, but slightly lower than PT-Fg assays, which appeared to be influenced by degraded fibrinogen. Clauss assays are generally reproducible between centres, analysers and reagents, but PT-Fg assays are not reliable in clinical settings

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    Influence of Vertical Ground Motions on the Seismic Fragility Modeling of a Bridge-Soil-Foundation System

    Get PDF
    This paper explores the effects of vertical ground motions (VGMs) on the component fragility of a coupled bridged-soil-foundation (CBSF) system with liquefaction potential, and highlights the unique considerations on the demand and capacity model required for fragility analysis under VGMs. Optimal intensity measures (IMs) that account for VGMs are identified. Moreover, fragility curves that consider capacity change with fluctuating axial force are derived. Results show that the presence of VGMs has a minor effect on the failure probabilities of piles and expansion bearings, while it has a great influence on fixed bearings. Whether VGMs have an impact on column fragilities depends on the design axial load ratio. Finally, more accurate fragility surfaces are derived, which are compared with results of conventional fragility curves. This study highlights the important role that VGMs play in the selection of optimal IMs, and the capacity and fragility representation of certain components of CBSF systems
    • 

    corecore